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Prefacio

Como o titulo indica, este é um livro sobre l6gica formal. A légica for-
mal diz respeito ao estudo de um certo tipo de linguagem que, como
qualquer linguagem, pode servir para expressar situacdes, estados de
coisas. A linguagem estudada na légica é formal, ou seja, suas expres-
soes sao definidas formalmente. Isso a torna uma linguagem muito util
devido a precisdo com a qual suas sentencas descrevem as situacdes.
Em particular, é bem dificil ser ambiguo na légica formal. O foco do
estudo da logica é a relagdo de consequéncia entre as sentengas, ou
seja, a determinacdo e identificacdo de quais sentengas se seguem de
quais outras sentencas. A relacdo de consequéncia é fundamental por-
que, entendendo-a melhor, podemos saber identificar as situa¢des que
inevitavelmente ocorreriam sempre que certas outras situacoes tives-
sem ocorrido. Mas a consequéncia ndo é a unica nogdo importante.
Também consideraremos a relacdo de ser satisfativel, ou seja, de nao
ser mutuamente contraditério. As no¢des da légica podem ser defini-
das tanto de modo semadntico, através de defini¢des precisas de con-
sequéncia baseadas em interpretacoes da linguagem, quanto de modo
demonstrativo, através de sistemas formais de manipula¢iao simbélica.

Dado que um elemento essencial da atividade filosofica, base racio-
nal de sua metodologia, é o relacionamento entre suposi¢cdes especula-
tivas com as diversas consequéncias destas suposi¢des, a l6gica formal
é, obviamente, uma sub-disciplina central da filosofia. £ com base nas
consequéncias das defini¢des, suposicdes e especulacdes que propdem,
que os fil6sofos avaliam a profundidade, relevincia, veracidade, consis-
téncia e plausibilidade de suas propostas. A logica formal também é
importante em matemadtica e ciéncia da computagdo. Em matematica,
as linguagens formais sdo usadas para descrever nao estados de coisas
“do dia a dia”, mas estados de coisas matematicos. Os matematicos



também se interessam pelas consequéncias de defini¢ces e suposi¢des
e, pare eles, também é importante estabelecer essas consequéncias (que
eles chamam de “teoremas”) usando métodos completamnete precisos
e rigorosos. A logica formal fornece esses métodos. Na ciéncia da
computacao, a légica formal é aplicada para descrever o estado e os
comportamentos dos sistemas computacionais, tais como circuitos, pro-
gramas, bancos de dados, etc. Os métodos da logica formal também
podem ser usados para estabelecer as consequéncias de tais descrigdes,
como, por exemplo, se um dado circuito estad ou nio livre de erros, ou
se um programa faz o que se pretende que ele faca, ou se um banco
de dados é consistente, ou se algo é verdadeiro a partir dos dados nele
contidos.

Este livro esta dividido em nove partes. A parte I introduz o as-
sunto e as no¢oes da l6gica de maneira informal, ainda sem utilizar uma
linguagem formal. As partes II-IV tratam das linguagens verofuncio-
nais. Em tais linguagens as sentencas sao formadas a partir de senten-
cas basicas através de certos termos (‘ou’, ‘¢’, ‘nao’, ‘se ...entao’) que
conectam sentenc¢as mais simples de modo a formar outras sentencas
mais complexas. Nogdes logicas tais como a relagdo de consequéncia
sdo discutidas de duas maneiras: semanticamente, usando o método
das tabelas de verdade (na Parte III) e demonstrativamente, usando
um sistema de derivagdes formais (na Parte IV). As partes V-VII li-
dam com uma linguagem mais complicada, a da l6gica de primeira
ordem. Além dos conectivos da légica verofuncional, esta linguagem
inclui também nomes, predicados, a relacdao de identidade e os chama-
dos quantificadores. Esses elementos adicionais da linguagem a tornam
muito mais expressiva do que a linguagem verofuncional, e passare-
mos um bom tempo investigando quanto se pode expressar nela. As
nogdes da légica de primeira ordem também sio definidas tanto seman-
ticamente, através interpretacdes, quanto demonstrativamente, usando
uma versdo mais complexa do sistema de deriva¢do formal introdu-
zido na Parte IV. A parte VIII discute uma extensdo da LVF (a logica
verofuncional), a partir de operadores ndo verofuncionais para a pos-
sibilidade e a necessidade, conhecida como légica modal. A parte IX
abrange dois tépicos avancados: o topico das formas normais conjun-
tivas e disjuntivas e da adequagdo expressiva dos conectivos verofun-
cionais, e o topico da corre¢do do sistema de deducdo natural para a
LVF.

Nos apéndices, vocé encontrard uma discussao sobre notacoes al-
ternativas para as linguagens tratadas neste texto, uma outra sobre



viii PREFACIO

sistemas de derivacdo alternativos, além de um guia de referéncia ra-
pida listando a maioria das regras e defini¢es importantes. Os termos
principais estdo listados em um glossario no final.

Este livro é fortemente baseado no livro forall x: Calgary, que é uma
versdo revista e ampliada por Aaron Thomas-Bolduc e Richard Zach
do livro forall x: Cambridge, que, por sua vez, é uma versio revista e
ampliada por Tim Button do livro forallx, de P.D. Magnus. Além disso,
esta edicdo baseia-se também na estrutura e digramagao de Mark Lyall
para a versdo de Thomas-Bolduc e Zach que esta livremente disponivel
em forallx.openlogicproject.org.

Vocé ¢é livre para copiar e redistribuir este material em qualquer
meio ou formato, remixar, transformar e desenvolvé-lo para qualquer
finalidade, mesmo comercialmente, desde que respeite as restri¢coes da
licenca Creative Commons Attribution 4.0 descritas na pagina ii.
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CAPITULO 1

Argumentos

O assunto da légica é a avaliagdo de argumentos; a identificacdo dos
bons argumentos, separando-os dos maus.

Na linguagem do dia a dia, as vezes usamos a palavra ‘argumento’
para falar de bate-bocas e desacordos verbais. Se vocé e um amigo
discutem nesse sentido, as coisas ndo estao indo bem entre vocés dois.
Nao ¢ este o sentido da palavra ‘argumento’ no ambito da logica. Estes
bate-bocas ndo sao argumentos no sentido l6gico. Sao apenas desacor-
dos.

Um argumento, no sentido em que empregaremos aqui, € algo mais
parecido com isto:

Ou foi 0 mordomo, ou foi o jardineiro.
Nao foi o mordomo.
.". Foi o jardineiro.

Aqui temos uma série de sentengas. Os trés pontos na terceira linha
do argumento significam “portanto”. Eles indicam que a sentenca final
expressa a conclusdo do argumento. As duas sentencgas anteriores sao
as premissas do argumento. Se vocé acredita nas premissas e acha que
a conclusao se segue das premissas—que o argumento, como diremos,
¢ valido—entao isso (talvez) forneca uma razao para vocé acreditar na
conclusdo.

E nesse tipo de coisa que os logicos estao interessados. Diremos
que um argumento é qualquer colecdo de premissas, juntamente com
uma conclusio.

A Parte I deste livro discute algumas nogdes logicas basicas que
se aplicam a argumentos em um idioma natural, tal como o portu-
gués. E fundamental comegar com uma compreensao clara do que sio



argumentos e do que significa um argumento ser valido. Mais tarde,
traduziremos os argumentos do portugués para uma linguagem formal.
Queremos que a validade formal, conforme sera definida na linguagem
formal, tenha pelo menos algumas das caracteristicas importantes que
a validade das linguagens naturais tem.

No exemplo recém apresentado, expressamos cada premissa atra-
vés de uma sentenca separada, e usamos uma terceira sentenca para a
expressar a conclusdo do argumento. Muitos argumentos sao expres-
sos dessa maneira, mas uma tnica sentenca pode conter um argumento
completo. Considere:

O mordomo tem um 4alibi, logo nao foi ele.

Este argumento tem uma premissa seguida de uma conclusao.

Muitos argumentos come¢am com as premissas e terminam com
uma conclusdo, mas nem todos. O argumento com o qual esta secao
comegou poderia igualmente ter sido apresentado com a conclusiao no
inicio, da seguinte forma:

Foi o jardineiro. Afinal, ou foi o mordomo, ou o jardineiro.
E nao foi o mordomo.

Este mesmo argumento também poderia ter sido apresentado com a
conclusdo no meio:

Nao foi o mordomo. Consequentemente foi o jardineiro,
dado que ou foi 0 mordomo, ou o jardineiro.

Ao avaliar um argumento, queremos saber se a conclusido se segue
ou nao das premissas. Entdo, a primeira coisa a fazer é identificar a
conclusao e separa-la das premissas. As expressdes abaixo sao frequen-
temente usadas para indicar a conclusao de um argumento:

logo
portanto
por conseguinte
sendo assim
assim
deste modo
por isso
em vista disso
isto (prova/mostra/demonstra) que
desta forma
consequentemente
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Por esse motivo sdo, as vezes, chamadas de EXPRESSOES INDICATIVAS
DE CONSLUSAO.

Por outro lado, as expressdes abaixo sa0 EXPRESSOES INDICATIVAS
DE PREMISSA, dado que geralmente elas indicam que a frase que as
segue é uma premissa e nao uma conclusio:

porque
visto que
desde que
dado que
uma vez que
afinal
afinal de contas
pois
assuma que
é sabido que
por causa de

Tanto as expressoes indicativas de conclusao quanto as expressoes indi-
cativas de premissa sdo apenas uma ajuda, porque quando vocé estiver
analisando um argumento, nada supera uma boa intui¢do, um bom
faro.

1.1 Sentencas

De um modo bastante geral, podemos definir um ARGUMENTO como
uma série de sentengas. Uma delas, geralmente a tltima, é a conclu-
sdo, e as outras sdo as premissas. Se as premissas sdo verdadeiras e o
argumento é bom, entdo vocé tem um motivo para aceitar a conclusao.

Na logica, estamos interessados apenas em sentencas que podem
figurar como premissas ou conclusées de um argumento, ou seja, sen-
tencas que podem ser verdadeiras ou falsas. Portanto, nos restringi-
remos a sentencas desse tipo e definiremos SENTENCA como frases ou
expressoes que podem ser verdadeiras ou falsas.

Nao confunda a idéia de uma sentenca que pode ser verdadeira ou
falsa com a diferenca entre fato e opinido. Freqiientemente, as senten-
cas que consideramos na légica expressam coisas que contariam como
fatos, tais como “Kierkegaard era corcunda” ou “Kierkegaard gostava
de améndoas”. Mas as sentencas da logica também podem expressar
coisas que nos parecem mais com uma opinido do que com um fato,
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tais como “Améndoas sdo saborosas”. Estas expressoes de opinido sdo
sentencas legitimas, no sentido l6gico que estamos adotando aqui. Em
outras palavras, uma sentenca nao é desqualificada como parte legi-
tima de um argumento s6 porque ndo sabemos se ela é verdadeira ou
falsa, nem porque sua verdade ou falsidade é uma questdo de opinido.
Nao importa se sabemos, nem mesmo se é possivel ou nao saber se
a sentenca é verdadeira ou falsa. Se a sentenca for do tipo que pode
ser verdadeira ou falsa, entdo ela sera uma sentenga em nossa acep¢ao
logica e pode desempenhar o papel de premissa ou conclusdo e fazer
parte de uma argumento logico. Estas sentencas que podem fazer parte
de um argumento, que podem ser verdadeiras ou falsas, sdo conhecidas
como senten¢as declarativas.

Por outro lado, ha coisas que seriam consideradas ‘sentencas’ por
um linguista ou gramatico, mas que nao sdo sentencas declarativas e
portanto, ndo contam como sentencas na logica.

Perguntas Em uma aula de gramatica, a expressdo “Vocé ja esta
com sono?” contaria como uma sentenca interrogativa. Mas ainda que
vocé esteja mesmo sonolento, a pergunta em si ndo sera verdadeira
por causa disso. Perguntas, em geral, ndo fazem declaragdes e por
isso ndo sdo nem verdadeiras nem falsas e ndo contam como sentencas
na légica. Elas ndo podem fazer parte de um argumento nem como
premissas nem como conclusdes. Se, por exemplo, vocé disser “nao
estou com sono” em resposta & pergunta acima, sua resposta sera uma
sentenca no sentido logico, porque diferentemente da pergunta, ela é
do tipo que pode ser verdadeira ou falsa. Geralmente, perguntas nao
contam como sentengas, mas respostas contam.

‘Sobre o que € este curso?” nao é uma sentencga (no nosso sentido).
Por outro lado, ‘Ninguém sabe sobre o que este curso trata’ é uma
sentenca.

Imperativos As ordens costumam ser formuladas como imperati-
vos tais como “Acorde!”, “Sente-se direito” e assim por diante. Em uma
aula de gramatica, isso contaria como sentencas imperativas. Ainda
que seja aconselhavel sentar-se com a coluna ereta, a ordem nao sera
verdadeira ou falsa por causa disso. Observe, no entanto, que as ordens
ou comandos nem sempre sio expressos como imperativos. Por exem-
plo, a expressdao ‘Vocé respeitara minha autoridade’ ¢ ou verdadeira ou
falsa, pois vocé respeitara ou nao. Entdo, estritamente falando, trata-se
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de uma sentenca no sentido 16gico, ainda que consigamos perceber que
por tras desta declaragdo ha uma intenc¢ao de dar uma ordem.

Exclamagdes Expressdes como ‘Ai!” as vezes sdo chamadas de sen-
tencas exclamatorias. No entanto, elas ndo sdo nem verdadeiras nem
falsas. No que diz respeito a légica, vamos tratar aqui sentengas do
tipo ‘Ai, machuquei meu dedao! como significando a mesma coisa
que ‘Machuquei meu deddo.” O ‘ai’ ndo acrescenta nada que possa al-
terar a verdade ou falsidade da sentenca e, por isso, é desconsiderado
nas avaliacoes logicas.

Exercicios

No final de alguns capitulos, existem exercicios que ajudam a revisar
e explorar o material abordado no capitulo. Fazer estes exercicios é
parte essencial e insubstituivel do seu aprendizado. Aprender logica
é como aprender a falar uma lingua estrangeira, ou aprender a jogar
ténis, ou a tocar piano. Nao basta ler e entender a teoria. A parte mais
importante do aprendizado é a pratica.

Entdo, aqui estd o primeiro exercicio. Identifique a conclusdo em
cada um dos 4 argumentos abaixo.

1. Faz sol. Logo eu deveria levar meus 6culos escuros.
Deve ter feito muito sol. Afinal de contas, eu estava de 6culos
escuros.

3. Ninguém, exceto vocé, pos as maos no pote de biscoitos. E a cena
do crime esta cheia de migalhas de biscoito. Vocé é o culpado!

4. A Srta. Rosa e o Prof. Black estavam no escritério na hora do
crime. O Sr. Marinho estava com o candelabro no saldo de fes-
tas, e sabemos que nao ha sangue em suas maos. Conseqiiente-
mente, o Coronel Mostarda cometeu o crime na cozinha, com a
chave inglesa. Lembre-se, afinal, que a pistola nao foi disparada.



CAPITULO 2

O alcance da
logica

2.1 Consequéncia e validade

Em 81, falamos sobre argumentos, ou seja, uma colecdo de sentencas
(as premissas), seguidas por uma tUnica sentenc¢a (a conclusao). Dis-
semos que algumas palavras, como “portanto”, indicam qual sentenca
deve ser a conclusdo. A palavra “portanto”, € claro, sugere que ha uma
conexao entre as premissas e a conclusdo. A conclusdo segue-se ou ¢
uma conseqiiéncia das premissas.

A principal preocupacdo da légica é, exatamente, esta nocdo de
consequéncia. Pode-se até dizer que a logica, enquanto um campo do
conhecimento, investiga o que se segue de que. Ela é constituida por
teorias e ferramentas que nos apontam quando uma sentenca se segue
de outras.

Pois bem, voltemos ao argumento principal apresentado em §1:

Ou foi 0 mordomo, ou foi o jardineiro.
Naio foi o mordomo.
.". Foi o jardineiro.

Nao sabemos ao qué, exatamente, estas sentencas se referem. Talvez
vocé suspeite que “foi” signifique “foi o autor de algum crime” ndo es-
pecificado. Podemos imaginar, por exemplo, que este argumento tenha
sido dito por um detetive que estivesse considerando as evidéncias de
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um crime em um livro de mistério ou em uma série de TV. Mas mesmo
sem ter qualquer dessas informacdes, vocé provavelmente concorda que
o argumento é bom no sentido de que, independentemente de a qué
exatamente as premissas se referem, se elas forem ambas verdadeiras,
a conclusao ndo pode deixar de ser verdadeira também. Se a primeira
premissa for verdadeira, ou seja, se for verdade que “ou foi o mordomo,
ou foi o jardineiro”, entdo pelo menos um deles “foi”, seja 1a o que “foi”
signifique. E se a segunda premissa também for verdadeira, nao “foi”
o mordomo. Isso deixa apenas uma opg¢ao: “foi o jardineiro”. Esta sen-
tenca, a conclusio, deve ser verdadeira. Entdo, neste caso, a conclusdao
se segue das premissas. Um argumento que possui esta propriedade é
chamado de VALIDO.

Um argumento, entdo, € vdlido, quando em qualquer situacdo na
qual suas premissas sao verdadeiras, sua conclusao também é. Nos sa-
bemos que o argumento do mordomo e do jardineiro é valido porque
mesmo sem saber exatamente do que as sentencas estdo falando, po-
demos ver que em qualquer situa¢do na qual as duas premissas forem
verdadeiras, a conclusio também sera.

Considere, agora, o seguinte argumento:

Se foi o motorista, nao foi a baba.
Naio foi a baba.
.". Foi o motorista.

Aqui também ndo temos ideia do que, especificamente, esta sendo dito.
No entanto, vocé provavelmente concorda que esse argumento é dife-
rente do anterior em um aspecto importante. Mesmo que suas premis-
sas sejam ambas verdadeiras, niao é garantido que a conclusdo também
sera. Aceitar as premissas desse argumento como verdadeiras ndo des-
carta a possibilidade de que “foi” outra pessoa diferente da baba e
do motorista. E, portanto, perfeitamente possivel que estas sentencas
estejam se referindo a uma situagdo na qual ambas as premissas sdo
verdadeiras e, no entanto, ndo “foi” o motorista. Nesta situacao as pre-
missas sdo verdadeiras mas a conclusido nio é. Entdo, neste segundo
argumento, a conclusdo nio segue das premissas. Chamamos de INVA-
LIDO qualquer argumento em que, como este, a conclusdo nao se segue
das premissas.

Um argumento é, entdo, invalido, quando suas sentencas podem
estar se referindo a uma situa¢do na qual todas as premissas sdo ver-
dadeiras, mas a conclusdo nao é. Nés sabemos que o argumento do
motorista e da baba ¢ invalido porque ha situagdes especificas as quais
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as sentencas do argumento podem estar se referindo, nas quais as pre-
missas sdo verdadeiras, mas a conclusdo é falsa. Uma destas situacoes
ocorre quando, por exemplo, “foi” significa “foi a ultima pessoa a deixar
a mansdo na noite de ontem”, e quando, além disso, ontem, a ultima
pessoa que deixou a manséio foi o jardineiro. Como o jardineiro foi o
ultimo a deixar a mansdo ontem, entdo a conclusio, que diz que foi o
motorista, é falsa, e segunda premissa, que diz que ndo foi a baba, é
verdadeira. E a primeira premissa é verdadeira porque se tivesse sido
o motorista o ultimo a deixar a mansao, certamente nao teria sido a
baba. Entdo, ha uma situacdo onde as duas premissas do argumento
sdo verdadeiras, mas a conclusdo é falsa e, portanto, o argumento é
invalido.

2.2 Situacgdes e tipos de validade

Nosso reconhecimento da invalidade do argumento do motorista e da
baba foi obtido pela proposi¢do de uma situacdo na qual as premis-
sas do argumento sao verdadeiras, mas a conclusao nao é. Chamamos
uma situacdo como esta, que prova a invalidade de um argumento, de
CONTRAEXEMPLO ao argumento. Sempre que um argumento possui al-
gum contra-exemplo, a conclusdo ndo podera ser uma conseqiiéncia
das premissas. Para que a conclusdo seja uma consequéncia das pre-
missas, a verdade das premissas deve garantir a verdade da concluséo.
Quando ha um contra-exemplo, a verdade das premissas ndo garante
a verdade da conclusao.

Enquanto légicos, queremos poder determinar quando a conclusao
de um argumento decorre das premissas. E a conclusio serd uma con-
sequéncia das premissas se nao houver contra-exemplo, uma situagao
(ou caso) em que as premissas sdo todas verdadeiras, mas a conclusio
nao é. Diante disso, podemos propor a seguinte defini¢do:

Uma sentenca 4 é CONSEQUENCIA das sentengas By, ..., B, se
e somente se ndo houver nenhuma situa¢do em que By, ..., B,
sejam todas verdadeiras e 4 nao seja. (Também dizemos que 4
SE SEGUE DE By, ..., B, ou que By, ..., B, SUSTENTAM 4.)

Essa “definicao” ainda esta incompleta. Ela ndo nos diz o que é
uma “situacdo” ou o que significa ser “verdadeiro em uma situacao”.
Até agora, vimos apenas um exemplo: um cenario hipotético envol-
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vendo trés pessoas, um motorista, uma baba e um jardineiro; nesse
cenario, nao foi o motorista nem a baba. Foi o jardineiro. Nesse ce-
nario, conforme vimos, as premissas do nosso segundo argumento sao
verdadeiras, mas a conclusdo ndo é: o cenario é um contra-exemplo.

Dissemos que argumentos onde a conclusdo é uma conseqiiéncia
das premissas sdo validos e aqueles onde a conclusdo nao é uma con-
seqiiéncia das premissas sao invalidos. Como ja apresentamos uma pri-
emeira aproximacdo de uma definicdo de consequéncia, vamos utiliza-
la para registrar as definicoes de argumento valido e invalido:

Um argumento é VALIDO se e somente se a conclusdo é uma
consequéncia das premissas.

Um argumento € INVALIDO se e somente se ele ndo ¢ valido, ou
seja, se ele possui um contra-exemplo.

A principal tarefa dos logicos é tornar esta no¢do de “situacdao”
mais precisa e investigar em que medida diferentes modos de tornar
mais precisa a nogido de “situagdo” afetam quais argumentos serdo
classificados como validos e quais nao serdo. Se, por exemplo, con-
siderarmos que uma “situa¢do” é um “cenario hipotético”, tal como o
do contraexemplo do argumento do motorista e da baba, fica claro que
o primeiro argumento, o do mordomo e do jardineiro, sera classificado
como valido. Isso porque em qualquer cenario que imaginarmos no
qual ou foi 0 mordomo, ou foi o jardineiro (ou seja, no qual a primeira
premissa é verdadeira) e no qual, além disso, ndo foi o mordomo (a se-
gunda premissa também é verdadeira), neste cenario, inevitavelmente,
foi o jardineiro (a conclusdo é verdadeira). Qualquer cenario hipotético
em que as premissas de nosso primeiro argumento sejam verdadeiras, a
conclusio, inevitavelmente, também sera verdadeira. Isso torna nosso
primeiro argumento valido.

Tornar a nogao de “situagdo” mais especifica, interpretando-a como
“cenario hipotético” € um avanco. Mas ndo € o fim da histéria. O pri-
meiro problema é que nio sabemos o que pode e o que nao pode ser
considerado como um cenario hipotético. Os cendrios hipotéticos sdo
limitados pelas leis da fisica? Sao eles obrigados a serem compativeis
com nossos conceitos e 0 modo como estes se relacionam uns com os
outros? Quais os limites para o que € aceitavel que seja considerado
como um cendrio hipotético? Respostas diferentes a estas perguntas
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levardo a diferentes modos de separar os argumentos em validos e in-
validos.

Suponha, por exemplo, que os cenarios hipotéticos sejam limitados
pelas leis da fisica. Ou seja, suponha que um cenario hipotético que
viola alguma lei da fisica ndo possa ser considerado como uma situagao
legitimamente aceitavel para refutar um argumento. Considere, entao,
0 seguinte argumento:

A espaconave Rocinante levou seis horas na viagem entre a esta-
¢ao espacial Tycho e o planeta Jupiter.

A distancia entre a estagdo espacial Tycho e Jupiter é menor do
que 14 bilhées de quilometros.

Um contra-exemplo para esse argumento seria um cenario hipotético
em que a nave Rocinante faz uma viagem de mais de 14 bilhdes de
quildémetros em 6 horas, excedendo, assim, a velocidade da luz. Mas
esse cenario é incompativel com as leis da fisica, j4 que de acordo
com elas nada pode exceder a velocidade da luz. Entdo, se aceitarmos
nossa suposicdo de que os cenarios hipotéticos devem respeitar as leis
da fisica, ndo conseguiremos produzir nenhum contra-exemplo a este
argumento, que sera, por isso, considerado valido. Por outro lado,
se os cenarios hipotéticos puderem desafiar as leis da fisica, entdo é
facil propor um no qual a premissa deste argumento é verdadeira e a
conclusao é falsa. Basta que, neste cenario, a nave Rocinante viaje mais
rapido que a luz. Sendo aceitavel, este cenario torna-se um um contra-
exemplo ao argumento que, por isso, ndo sera considerado valido.

Suponha, agora, que os cendrios hipotéticos sejam limitados pelos
nossos conceitos e pelo modo que eles se relacionam, e considere este
outro argumento:

Jussara é uma oftalmologista.
.". Jussara é uma médica de olhos.

Se estamos permitindo apenas cenarios compativeis com nossos concei-
tos e suas relagdes, entdo este também é um argumento valido. Afinal,
em qualquer cenario que imaginarmos no qual Jussara é uma oftalmo-
logista, Jussara serda uma médica de olhos, porque os conceitos de ser
uma oftalmologista e ser uma médica de olhos sdo idénticos, tém o
mesmo significado. Entdo, qualquer situa¢do que seria contra-exemplo
ao argumento, na qual Jussara € uma oftalmologista mas nio uma mé-
dica de olhos, esta proibida sob a suposicdo de que os cenarios hipo-
téticos estdo restritos aos nossos conceitos e suas relagdes. Sob esta
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suposicdo o argumento ndo tera qualquer contra-exemplo e, portanto,
sera valido.

Dependendo dos tipos de cenarios que consideramos aceitaveis
como situac¢des que representam contra-exemplos, chegaremos a dife-
rentes nocdes de validade e consequéncia. Podemos chamar de NO-
MOLOGICAMENTE VALIDO um argumento para o qual ndo ha contra-
exemplos que nao violem as leis da natureza. E podemos chamar de
CONCEITUALMENTE VALIDO um argumento para o qual ndo ha contra-
exemplos que ndo violem as conexdes de nossos conceitos. Estes dois
casos nos dao uma primeira e importante licio sobre a logica. Eles
mostram que a légica e suas as nogdes principais, tais como a validade
e a consequéncia, ndo é anterior, separada ou prioritaria com relagao
a outros dominios, tais como o dominio da realidade natural e das leis
da natureza, e o dominio dos conceitos e significados das sentencas. O
modo como entendermos e concebermos estes outros dominios podera
interferir e alterar nosso entendimento sobre se um argumento é valido
ou nao.

2.3 Validade Formal

Uma caracteristica distintiva da consequéncia ldgica é que ela nao deve
depender do contetido das premissas e conclusdes, mas apenas de sua
forma légica. Em outras palavras, como logicos, queremos desenvolver
uma teoria que possa fazer distin¢des ainda mais finas. Por exemplo,
ambos os argumentos

Jussara é uma oftalmologista ou uma dentista.
Jussara ndo é uma dentista.
". Jussara € uma médica de olhos.

Jussara € uma oftalmologista ou uma dentista.
Jussara ndao é uma dentista.
". Jussara é uma oftalmologista.

sdo argumentos validos. Mas enquanto a validade do primeiro depende
do conteudo (ou seja, o significado de “oftalmologista” e “médico de
olhos”), a validade do segundo ndo depende disso. O segundo argu-
mento é FORMALMENTE VALIDO. Podemos descrever a “forma” desse
argumento através de um padrao mais ou menos assim:
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Aéum X ouum Y.
AnaoéumY.
Aéum X.

Aqui, 4, X e Y funcionam como espagos reservados para expressoes
apropriadas que, quando substituem 4, X e Y, transformam este pa-
drao em um argumento de fato, constituido por sentencas. Por exem-

plo,

Edna é uma matematica ou uma biéloga.
Edna nédo é uma biologa.
.. Edna ¢ uma matematica.

¢ um argumento com esta mesma forma que o padrao acima descreve.
Ja o primeiro argumento sobre Jussara, da pagina anterior, nao. Porque
nele ha duas expressoes diferentes substituindo Y: “oftalmologista” e
“médica de olhos”.

Mais ainda, este primeiro argumento nio é formalmente valido.
sua forma é:

Aéum X ouum Y.
AnaoéumY.
Aéum Z.

Quando substituimos, neste padrao, X por “oftalmologista” e Z por
“médica de olhos”, obtemos o primeiro argumento original. Mas eis
aqui um outro argumento com esta mesma forma:

Edna é uma matematica ou uma bidloga.
Edna nao € uma biologa.
.". Edna é uma trapezista.

Este argumento claramente nao é valido, uma vez que podemos imagi-
nar (uma situagdo em que ha) uma matematica chamada Edna que nao
€ uma trapezista nem uma bidloga. Nesta situacdo as duas premissas
sao verdadeiras, mas a conclusdo nao é, e o argumento, por isso, nao
é valido.

Nossa estratégia, enquanto logicos, sera a de apresentar uma no-
¢do de “situacdo” na qual um argumento se torne valido se ele for
formalmente valido. Claramente, essa nogao de “situacao” violara nao
apenas algumas leis da natureza, mas algumas regras da lingua por-
tuguasa. Como o primeiro argumento desta secdo é invalido nesse
sentido formal, devemos admitir como contraexemplo uma situac¢do
em que Jussara é uma oftalmologista, mas ndo uma médica de olhos.
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Esta situacdo nio é conceitualmente concebivel: ela é descartada pelos
significados de “oftalmologista” e “médica de olhos”.

Faremos algumas suposicoes sobre os diversos tipos diferentes de
situacdes que admitiremos na andlise da validade de um argumento. A
primeira suposi¢ao é que toda situacdo admissivel tem que ser capaz de
determinar a verdade ou nao de cada sentenca do argumento em con-
sideracdo. Isso significa, em primeiro lugar, que ndo sera aceito como
uma situa¢do admissivel para um possivel contra-exermplo, qualquer
cenario imaginario no qual a verdade ou nao de alguma sentenca do
argumento considerado nio seja determinada. Por exemplo, um cena-
rio em que Jussara é dentista, mas ndo oftalmologista, contard como
uma situagao a ser considerada nos primeiros argumentos desta secao,
mas nao como uma situa¢ao a ser considerada nos ultimos dois argu-
mentos: este cendrio nada nos diz sobre se Edna é matematica, biéloga
ou trapezista. Se uma situacdo ndao determina que uma sentenca é
verdadeira, diremos que ela determina que a sentenca é FALSA. Assu-
miremos, entdo, que as situa¢oes determinam a verdade ou a falsidade

das sentencas, mas nunca ambas.*
*

*kkkkkhkkhkkhrk
*kkk AQUI *kkkkk
*kkkkkkkkhkkhrk

*

2.4 Sound arguments

Before we go on and execute this strategy, a few clarifications. Argu-
ments in our sense, as conclusions which (supposedly) follow from pre-
mises, are of course used all the time in everyday and scientific dis-
course. When they are, arguments are given to support or even prove

1 Ainda que estas suposi¢des sobre as situacbes admissiveis parecam nada
mais do que recomendagdes do senso comum, elas sdo controversas entre os
fil6sofos da l6gica. Em primeiro lugar, ha l6gicos que querem admitir situa¢oes
em que as sentencas nao sao verdadeiras nem falsas, mas tém algum tipo de
nivel intermediario de verdade. De modo um pouco mais controverso, outros
filosofos pensam que devemos permitir a possibilidade de que as sentencgas se-
jam verdadeiras e falsas ao mesmo tempo. Existem sistemas de légica, que nao
discutiremos neste livro, em que uma sentenca pode tanto ser nem verdadeira
nem falsa, quanto ser ambas, verdadeira e falsa.
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their conclusions. Now, if an argument is valid, it will support its con-
clusion, but onrly if its premises are all true. Validity rules out the
possibility that the premises are true and the conclusion is not true at
the same time. It does not, by itself, rule out the possibility that the
conclusion is not true, period. In other words, it is perfectly possibly
for a valid argument to have a conclusion that isn’t true!

Consider this example:

Oranges are either fruit or musical instruments.
Oranges are not fruit.
.. Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it follows
from the premises. If both premises are true, then the conclusion just
has to be true. So the argument is valid.

Conversely, having true premises and a true conclusion is not
enough to make an argument valid. Consider this example:

London is in England.
Beijing is in China.
.". Paris is in France.

The premises and conclusion of this argument are, as a matter of fact,
all true, but the argument is invalid. If Paris were to declare indepen-
dence from the rest of France, then the conclusion would no longer
be true, even though both of the premises would remain true. Thus,
there is a case where the premises of this argument are true without the
conclusion being true. So the argument is invalid.

The important thing to remember is that validity is not about the
actual truth or falsity of the sentences in the argument. It is about
whether it is possible for all the premises to be true and the conclusion
to be not true at the same time (in some hypothetical case). What is
in fact the case has no special role to play; and what the facts are does
not determine whether an argument is valid or not.> Nothing about
the way things are can by itself determine if an argument is valid. It
is often said that logic doesn’t care about feelings. Actually, it doesn’t
care about facts, either.

When we use an argument to prove that its conclusion is frue, then,
we need two things. First, we need the argument to be valid, i.e., we

2Well, there is one case where it does: if the premises are in fact true and
the conclusion is in fact not true, then we live in a counterexample; so the
argument is invalid.
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need the conclusion to follow from the premises. But we also need the
premises to be true. We will say that an argument is SOUND if and only
if it is both valid and all of its premises are true.

The flip side of this is that when you want to rebut an argument,
you have two options: you can show that (one or more of) the premises
are not true, or you can show that the argument is not valid. Logic,
however, will only help you with the latter!

2.5 Inductive arguments
Many good arguments are invalid. Consider this one:

Every winter so far, it has snowed in Calgary.
.". It will snow in Calgary this coming winter.

This argument generalises from observations about many (past) cases
to a conclusion about all (future) cases. Such arguments are called
INDUCTIVE arguments. Nevertheless, the argument is invalid. Even if
it has snowed in Calgary every winter thus far, it remains possible that
Calgary will stay dry all through the coming winter. In fact, even if it
will henceforth snow every January in Calgary, we could still imagine a
case in which this year is the first year it doesn’t snow all winter. And
that hypothetical scenario is a case where the premises of the argument
are true but the conclusion is not, making the argument invalid.

The point of all this is that inductive arguments—even good induc-
tive arguments—are not (deductively) valid. They are not watertight.
Unlikely though it might be, it is possible for their conclusion to be false,
even when all of their premises are true. In this book, we will set aside
(entirely) the question of what makes for a good inductive argument.
Our interest is simply in sorting the (deductively) valid arguments from
the invalid ones.

So: we are interested in whether or not a conclusion follows from
some premises. Don’t, though, say that the premises infer the conclu-
sion. Entailment is a relation between premises and conclusions; infe-
rence is something we do. So if you want to mention inference when
the conclusion follows from the premises, you could say that one may
infer the conclusion from the premises.
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Exercicios

A. Which of the following arguments are valid? Which are invalid?

1.

Socrates is a man.

2. All men are carrots.
". Socrates is a carrot.

Abe Lincoln was either born in Illinois or he was once president.

2. Abe Lincoln was never president.
". Abe Lincoln was born in Illinois.

If I pull the trigger, Abe Lincoln will die.
I do not pull the trigger.

". Abe Lincoln will not die.

L0 H

Abe Lincoln was either from France or from Luxemborg.
Abe Lincoln was not from Luxemborg.

. Abe Lincoln was from France.

. If the world ends today, then I will not need to get up tomorrow

morning.

. I'will need to get up tomorrow morning.
. The world will not end today.

. Joe is now 19 years old.
. Joe is now 87 years old.
. Bob is now 20 years old.

B. Could there be:

1.
2.
3.
4.

5.

A valid argument that has one false premise and one true pre-
mise?

A valid argument that has only false premises?

A valid argument with only false premises and a false conclusion?
An invalid argument that can be made valid by the addition of
a new premise?

A valid argument that can be made invalid by the addition of a
new premise?

In each case: if so, give an example; if not, explain why not.



CAPITULO 3

Outras nocoes
logicas

In §2, we introduced the ideas of consequence and of valid argument.
This is one of the most important ideas in logic. In this section, we
will introduce are some similarly important ideas. They all rely, as did
validity, on the idea that sentences are true (or not) in cases. For the
rest of this section, we’ll take cases in the sense of conceivable scenario,
i.e., in the sense in which we used them to define conceptual validity.
The points we made about different kinds of validity can be made about
our new notions along similar lines: if we use a different idea of what
counts as a “case” we will get different notions. And as logicians we
will, eventually, consider a more permissive definition of case than we
do here.

3.1 Joint possibility
Consider these two sentences:

B1. Jane’s only brother is shorter than her.
Be. Jane’s only brother is taller than her.

Logic alone cannot tell us which, if either, of these sentences is true.
Yet we can say that if the first sentence (B1) is true, then the second
sentence (B2) must be false. Similarly, if B2 is true, then B1 must be
false. There is no possible scenario where both sentences are true to-

18
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gether. These sentences are incompatible with each other, they cannot
all be true at the same time. This motivates the following definition:

Sentences are JOINTLY POSSIBLE if and only if there is a case
where they are all true together.

B1 and Be are jointly impossible, while, say, the following two sen-
tences are jointly possible:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is younger than her.

We can ask about the joint possibility of any number of sentences.
For example, consider the following four sentences:

G1. There are at least four giraffes at the wild animal park.

Ge. There are exactly seven gorillas at the wild animal park.

G3. There are not more than two martians at the wild animal park.
G4. Every giraffe at the wild animal park is a martian.

G1 and G4 together entail that there are at least four martian giraffes at
the park. This conflicts with Gg3, which implies that there are no more
than two martian giraffes there. So the sentences G1-G4 are jointly
impossible. They cannot all be true together. (Note that the sentences
G1, G3 and G4 are jointly impossible. But if sentences are already
jointly impossible, adding an extra sentence to the mix cannot make
them jointly possible!)

3.2 Necessary truths, necessary falsehoods,
and contingency

In assessing arguments for validity, we care about what would be true if
the premises were true, but some sentences just must be true. Consider
these sentences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look outside
or check the weather channel. It might be true; it might be false. A
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sentence which is capable of being true and capable of being false (in
different circumstances, of course) is called CONTINGENT.

Sentence 2 is different. You do not need to look outside to know
that it is true. Regardless of what the weather is like, it is either raining
or it is not. That is a NECESSARY TRUTH.

Equally, you do not need to check the weather to determine whether
or not sentence 3 is true. It must be false, simply as a matter of logic. It
might be raining here and not raining across town; it might be raining
now but stop raining even as you finish this sentence; but it is impossible
for it to be both raining and not raining in the same place and at the
same time. So, whatever the world is like, it is not both raining here
and not raining here. It is a NECESSARY FALSEHOOD.

Something might always be true and still be contingent. For ins-
tance, if there never were a time when the universe contained fewer
than seven things, then the sentence ‘At least seven things exist’ would
always be true. Yet the sentence is contingent: the world could have
been much, much smaller than it is, and then the sentence would have
been false.

Necessary equivalence

We can also ask about the logical relations between two sentences. For
example:

John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not have
gone to the store or washed dishes at all. Yet they must have the same
truth-value. If either of the sentences is true, then they both are; if either
of the sentences is false, then they both are. When two sentences have
the same truth value in every case, we say that they are NECESSARILY
EQUIVALENT.

Summary of logical notions
> An argument is VALID if there is no case where the premises are
all true and the conclusion is not; it is INVALID otherwise.
> A NECESSARY TRUTH is a sentence that is true in every case.

> A NECESSARY FALSEHOOD is a sentence that is false in every case.
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> A CONTINGENT SENTENCE is neither a necessary truth nor a ne-

cessary falsehood; a sentence that is true in some case and false
in some other case.

Two sentences are NECESSARILY EQUIVALENT if, in every case,
they are both true or both false.

A collection of sentences is JOINTLY POSSIBLE if there is a
case where they are all true together; it is JOINTLY IMPOSSIBLE
otherwise.

Exercicios

A. For each of the following: Is it a necessary truth, a necessary fal-
sehood, or contingent?

Al o

6.

Caesar crossed the Rubicon.

Someone once crossed the Rubicon.

No one has ever crossed the Rubicon.

If Caesar crossed the Rubicon, then someone has.

Even though Caesar crossed the Rubicon, no one has ever cros-
sed the Rubicon.

If anyone has ever crossed the Rubicon, it was Caesar.

B. For each of the following: Is it a necessary truth, a necessary fal-
sehood, or contingent?

1.

Elephants dissolve in water.

2. Wood is a light, durable substance useful for building things.

4.
5.

If wood were a good building material, it would be useful for
building things.

Ilive in a three story building that is two stories tall.

If gerbils were mammals they would nurse their young.

C. Which of the following pairs of sentences are necessarily equivalent?

1.

2.

3.

Elephants dissolve in water.

If you put an elephant in water, it will disintegrate.
All mammals dissolve in water.

If you put an elephant in water, it will disintegrate.
George Bush was the 43rd president.

Barack Obama is the 44th president.
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Barack Obama is the 44th president.

Barack Obama was president immediately after the 43rd presi-
dent.

Elephants dissolve in water.

All mammals dissolve in water.

D. Which of the following pairs of sentences are necessarily equivalent?

1.

2.

3.

4.

5

Thelonious Monk played piano.

John Coltrane played tenor sax.

Thelonious Monk played gigs with John Coltrane.

John Coltrane played gigs with Thelonious Monk.

All professional piano players have big hands.

Piano player Bud Powell had big hands.

Bud Powell suffered from severe mental illness.

All piano players suffer from severe mental illness.

John Coltrane was deeply religious.

John Coltrane viewed music as an expression of spirituality.

E. Consider the following sentences:

G1 There are at least four giraffes at the wild animal park.

G2 There are exactly seven gorillas at the wild animal park.

G3 There are not more than two Martians at the wild animal park.

G4 Every giraffe at the wild animal park is a Martian.

Now consider each of the following collections of sentences. Which
are jointly possible? Which are jointly impossible?

1.
2.
3.
4.

Sentences G2, G3, and G4
Sentences G1, G3, and G4
Sentences G1, G2, and G4
Sentences G1, Gg, and G3

F. Consider the following sentences.

M1 All people are mortal.

Mz Socrates is a person.

M3 Socrates will never die.

M4 Socrates is mortal.
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Which combinations of sentences are jointly possible? Mark each “pos-
sible” or “impossible.”

N

5.

Sentences M1, M2, and M3
Sentences Mg, M3, and M4
Sentences M2 and M3
Sentences M1 and M4
Sentences M1, M2, M3, and M4

G. Which of the following is possible? If it is possible, give an example.
If it is not possible, explain why.

1.
2.

3.

o o

10.

A valid argument that has one false premise and one true premise
A valid argument that has a false conclusion

A valid argument, the conclusion of which is a necessary fal-
sehood

An invalid argument, the conclusion of which is a necessary truth
A necessary truth that is contingent

Two necessarily equivalent sentences, both of which are neces-
sary truths

Two necessarily equivalent sentences, one of which is a necessary
truth and one of which is contingent

Two necessarily equivalent sentences that together are jointly im-
possible

A jointly possible collection of sentences that contains a neces-
sary falsehood

A jointly impossible set of sentences that contains a necessary
truth

H. Which of the following is possible? If it is possible, give an example.
If it is not possible, explain why.

1.

2.
3.

oo

A valid argument, whose premises are all necessary truths, and
whose conclusion is contingent

A valid argument with true premises and a false conclusion

A jointly possible collection of sentences that contains two sen-
tences that are not necessarily equivalent

A jointly possible collection of sentences, all of which are contin-
gent

A false necessary truth

A valid argument with false premises

A necessarily equivalent pair of sentences that are not jointly
possible
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8. A necessary truth that is also a necessary falsehood
9. A jointly possible collection of sentences that are all necessary
falsehoods



PARTE I
Logica
vero-funcional



CAPITULO 4

Primeiros
passos para a
simbolizacdo

4.1 Validity in virtue of form

Consider this argument:
It is raining outside.

If it is raining outside, then Jenny is miserable.
.". Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid reader
of Tolstoy.

.". Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in which
we can say that they share a common structure. We might express the
structure thus:

A
If 4, then C

26
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. C

This looks like an excellent argument structure. Indeed, surely any ar-
gument with this structure will be valid, and this is not the only good
argument structure. Consider an argument like:

Jenny is either happy or sad.
Jenny is not happy.
.". Jenny is sad.

Again, this is a valid argument. The structure here is something like:

Aor B
not-A4
. B

A superb structure! Here is another example:

It’s not the case that Jim both studied hard and acted in lots of
plays.
Jim studied hard

.". Jim did not act in lots of plays.

This valid argument has a structure which we might represent thus:

not-(4 and B)
A
. not-B

These examples illustrate an important idea, which we might describe
as validity in virtue of form. The validity of the arguments just considered
has nothing very much to do with the meanings of English expressions
like Jenny is miserable’, ‘Dipan is an avid reader of Tolstoy’, or Jim
acted in lots of plays’. If it has to do with meanings at all, it is with the
meanings of phrases like ‘and’, ‘or’, ‘not,” and ‘if..., then...’.

In Parts II-IV, we are going to develop a formal language which al-
lows us to symbolize many arguments in such a way as to show that they
are valid in virtue of their form. That language will be truth-functional
logic, or TFL.

4.2 Validity for special reasons

There are plenty of arguments that are valid, but not for reasons relating
to their form. Take an example:
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Juanita is a vixen
.". Juanita is a fox

It is impossible for the premise to be true and the conclusion false. So
the argument is valid. However, the validity is not related to the form
of the argument. Here is an invalid argument with the same form:

Juanita is a vixen
.". Juanita is a cathedral

This might suggest that the validity of the first argument is keyed to
the meaning of the words ‘vixen’ and ‘fox’. But, whether or not that
is right, it is not simply the shape of the argument that makes it valid.
Equally, consider the argument:

The sculpture is green all over.
.". The sculpture is not red all over.

Again, it seems impossible for the premise to be true and the conclusion
false, for nothing can be both green all over and red all over. So the
argument is valid, but here is an invalid argument with the same form:

The sculpture is green all over.
.". The sculpture is not shiny all over.

The argument is invalid, since it is possible to be green all over and
shiny all over. (One might paint their nails with an elegant shiny green
varnish.) Plausibly, the validity of the first argument is keyed to the
way that colours (or colour-words) interact, but, whether or not that is
right, it is not simply the shape of the argument that makes it valid.

The important moral can be stated as follows. At best, TFL will help
us to understand arguments that are valid due to their form.

4.3 Atomic sentences

We started isolating the form of an argument, in §4.1, by replacing sub-
sentences of sentences with individual letters. Thus in the first example
of this section, ‘it is raining outside’ is a subsentence of ‘If it is raining
outside, then Jenny is miserable’, and we replaced this subsentence with
‘4.

Our artificial language, TFL, pursues this idea absolutely ruthlessly.
We start with some sentence letters. These will be the basic building
blocks out of which more complex sentences are built. We will use single
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uppercase letters as sentence letters of TFL. There are only twenty-six
letters of the alphabet, but there is no limit to the number of sentence
letters that we might want to consider. By adding subscripts to letters,
we obtain new sentence letters. So, here are five different sentence
letters of TFL:

A, P, Py, Py, Ag3y

We will use sentence letters to represent, or symbolize, certain English
sentences. To do this, we provide a SYMBOLIZATION KEY, such as the
following:

A: Tt is raining outside
C: Jenny is miserable

In doing this, we are not fixing this symbolization once and for all. We
are just saying that, for the time being, we will think of the sentence
letter of TFL, ‘4’, as symbolizing the English sentence ‘It is raining
outside’, and the sentence letter of TFL, ‘C’, as symbolizing the English
sentence Jenny is miserable’. Later, when we are dealing with different
sentences or different arguments, we can provide a new symbolization

key; as it might be:

A: Jenny is an anarcho-syndicalist
C: Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English sen-
tence might have is lost when it is symbolized by a sentence letter of
TFL. From the point of view of TFL, a sentence letter is just a letter. It
can be used to build more complex sentences, but it cannot be taken
apart.
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Conectivos

In the previous chapter, we considered symbolizing fairly basic English
sentences with sentence letters of TFL. This leaves us wanting to deal
with the English expressions ‘and’, ‘or’, ‘not’, and so forth. These are
connectives—they can be used to form new sentences out of old ones. In
TFL, we will make use of logical connectives to build complex sentences
from atomic components. There are five logical connectives in TFL.
This table summarises them, and they are explained throughout this
section.

symbol what it is called rough meaning

- negation ‘It is not the case that. ..’
A conjunction ‘Both...and ..’

% disjunction ‘Either...or ...

— conditional ‘If ... then ...’

- biconditional ‘...if and only if ..’

These are not the only connectives of English of interest. Others
are, e.g., ‘unless’, ‘neither ... nor ...’, and ‘because’. We will see
that the first two can be expressed by the connectives we will discuss,
while the last cannot. ‘Because’, in contrast to the others, is not fruth

Sfunctional.

5.1 Negation

Consider how we might symbolize these sentences:

30
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1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.
3. Mary is not in Barcelona.

In order to symbolize sentence 1, we will need a sentence letter. We
might offer this symbolization key:

B: Mary is in Barcelona.

Since sentence 2 is obviously related to sentence 1, we will not want
to symbolize it with a completely different sentence letter. Roughly,
sentence 2 means something like ‘It is not the case that B’. In order to
symbolize this, we need a symbol for negation. We will use ‘~’. Now
we can symbolize sentence 2 with ‘-B’.

Sentence 3 also contains the word ‘not’, and it is obviously equiva-
lent to sentence 2. As such, we can also symbolize it with ‘~B’.

A sentence can be symbolized as —d if it can be paraphrased
in English as ‘It is not the case that...’.

It will help to offer a few more examples:

4. The widget can be replaced.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:
R: The widget is replaceable

Sentence 4 can now be symbolized by ‘R’. Moving on to sentence 5:
saying the widget is irreplaceable means that it is not the case that the
widget is replaceable. So even though sentence 5 does not contain the
word ‘not’, we will symbolize it as follows: ‘~R’.

Sentence 6 can be paraphrased as ‘It is not the case that the widget
is irreplaceable.” Which can again be paraphrased as ‘It is not the
case that it is not the case that the widget is replaceable’. So we might
symbolize this English sentence with the TFL sentence ‘-—R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.
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If we let the TFL-sentence ‘H’ symbolize Jane is happy’, then we can
symbolize sentence 7 as ‘H’. However, it would be a mistake to sym-
bolize sentence 8 with ‘~H’. If Jane is unhappy, then she is not happy;
but sentence 8 does not mean the same thing as ‘It is not the case that
Jane is happy’. Jane might be neither happy nor unhappy; she might be
in a state of blank indifference. In order to symbolize sentence 8, then,
we would need a new sentence letter of TFL.

5.2 Conjunction

Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

We will need separate sentence letters of TFL to symbolize sentences g
and 10; perhaps

A: Adam is athletic.
B: Barbara is athletic.

Sentence g can now be symbolized as ‘4’, and sentence 10 can be sym-
bolized as ‘B’. Sentence 11 roughly says ‘A and B’. We need another
symbol, to deal with ‘and’. We will use ‘A’. Thus we will symbolize it
as ‘(4 A B)’. This connective is called CONJUNCTION. We also say that
‘A’ and ‘B’ are the two cONJUNCTS of the conjunction ‘(4 A B)’.

Notice that we make no attempt to symbolize the word ‘also’ in
sentence 11. Words like ‘both’ and ‘also’ function to draw our attention
to the fact that two things are being conjoined. Maybe they affect the
emphasis of a sentence, but we will not (and cannot) symbolize such
things in TFL.

Some more examples will bring out this point:

12. Barbara is athletic and energetic.

13. Barbara and Adam are both athletic.

14. Although Barbara is energetic, she is not athletic.

15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two things
(about Barbara). In English, it is permissible to refer to Barbara only
once. It might be tempting to think that we need to symbolize sentence
12 with something along the lines of ‘B and energetic’. This would be a
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mistake. Once we symbolize part of a sentence as ‘B’, any further struc-
ture is lost, as ‘B’ is a sentence letter of TFL. Conversely, ‘energetic’
is not an English sentence at all. What we are aiming for is something
like ‘B and Barbara is energetic’. So we need to add another sentence
letter to the symbolization key. Let ‘E’ symbolize ‘Barbara is energetic’.
Now the entire sentence can be symbolized as ‘(B A E)’.

Sentence 13 says one thing about two different subjects. It says of
both Barbara and Adam that they are athletic, even though in English
we use the word ‘athletic’ only once. The sentence can be paraphrased
as ‘Barbara is athletic, and Adam is athletic’. We can symbolize this in
TFL as ‘(B A 4)’, using the same symbolization key that we have been
using.

Sentence 14 is slightly more complicated. The word ‘although’ sets
up a contrast between the first part of the sentence and the second
part. Nevertheless, the sentence tells us both that Barbara is energetic
and that she is not athletic. In order to make each of the conjuncts a
sentence letter, we need to replace ‘she’ with ‘Barbara’. So we can pa-
raphrase sentence 14 as, ‘Both Barbara is energetic, and Barbara is not
athletic’. The second conjunct contains a negation, so we paraphrase
further: ‘Both Barbara is energetic and it is not the case that Barbara is
athletic’. Now we can symbolize this with the TFL sentence ‘(£ A —B)’.
Note that we have lost all sorts of nuance in this symbolization. There
is a distinct difference in tone between sentence 14 and ‘Both Barbara
is energetic and it is not the case that Barbara is athletic’. TFL does
not (and cannot) preserve these nuances.

Sentence 15 raises similar issues. There is a contrastive structure,
but this is not something that TFL can deal with. So we can paraphrase
the sentence as ‘Both Adam is athletic, and Barbara is more athletic
than Adam’. (Notice that we once again replace the pronoun ‘him’ with
‘Adam’.) How should we deal with the second conjunct? We already
have the sentence letter ‘4’, which is being used to symbolize ‘Adam is
athletic’, and the sentence ‘B’ which is being used to symbolize ‘Barbara
is athletic’; but neither of these concerns their relative athleticity. So,
to symbolize the entire sentence, we need a new sentence letter. Let
the TFL sentence ‘R’ symbolize the English sentence ‘Barbara is more
athletic than Adam’. Now we can symbolize sentence 15 by ‘(4 A R)’.
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A sentence can be symbolized as (s A %) if it can be paraph-
rased in English as ‘Both..., and...’, or as ..., but ...’, or as
‘although ..., ...".

You might be wondering why we put brackets around the conjunc-
tions. The reason for this is brought out by considering how negation
might interact with conjunction. Consider:

16. It’s not the case that you will get both soup and salad.
17. You will not get soup but you will get salad.

Sentence 16 can be paraphrased as ‘It is not the case that: both you
will get soup and you will get salad’. Using this symbolization key:

$1: You will get soup.
S2: You will get salad.

We would symbolize ‘both you will get soup and you will get salad’ as
‘(81 A Sy). To symbolize sentence 16, then, we simply negate the whole
sentence, thus: ‘=(S$1 A Sy)’.

Sentence 17 is a conjunction: you will not get soup, and you will get
salad. “You will not get soup’ is symbolized by ‘=S7’. So to symbolize
sentence 17 itself, we offer ‘(=81 A S9)’.

These English sentences are very different, and their symbolizations
differ accordingly. In one of them, the entire conjunction is negated. In
the other, just one conjunct is negated. Brackets help us to keep track
of things like the scope of the negation.

5.3 Disjunction

Consider these sentences:

18. Either Fatima will play videogames, or she will watch movies.
19. Either Fatima or Omar will play videogames.

For these sentences we can use this symbolization key:

F: Fatima will play videogames.
0: Omar will play videogames.
M: Fatima will watch movies.

However, we will again need to introduce a new symbol. Sentence 18
is symbolized by ‘(¥ vV M)’. The connective is called DISJUNCTION. We
also say that ‘#” and ‘M’ are the DISJUNCTS of the disjunction ‘(F Vv M) .
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Sentence 19 is only slightly more complicated. There are two sub-
jects, but the English sentence only gives the verb once. However, we
can paraphrase sentence 19 as ‘Either Fatima will play videogames, or
Omar will play videogames’. Now we can obviously symbolize it by
‘(F v 0) again.

A sentence can be symbolized as (¢ V%) if it can be paraphrased
in English as ‘Either..., or....” Each of the disjuncts must be a
sentence.

Sometimes in English, the word ‘or’ is used in a way that excludes
the possibility that both disjuncts are true. This is called an EXCLUSIVE
OR. An exclusive or is clearly intended when it says, on a restaurant
menu, ‘Entrees come with either soup or salad’: you may have soup;
you may have salad; but, if you want both soup and salad, then you have
to pay extra.

At other times, the word ‘or’ allows for the possibility that both
disjuncts might be true. This is probably the case with sentence 19,
above. Fatima might play videogames alone, Omar might play video-
games alone, or they might both play. Sentence 19 merely says that a¢
least one of them plays videogames. This is called an INCLUSIVE OR.
The TFL symbol v’ always symbolizes an inclusive or.

It might help to see negation interact with disjunction. Consider:

20. Either you will not have soup, or you will not have salad.
21. You will have neither soup nor salad.
22. You get either soup or salad, but not both.

Using the same symbolization key as before, sentence 20 can be pa-
raphrased in this way: ‘Either it is not the case that you get soup, or it
is not the case that you get salad’. To symbolize this in TFL, we need
both disjunction and negation. ‘It is not the case that you get soup’ is
symbolized by ‘=87’. ‘It is not the case that you get salad’ is symbolized
by ‘=82’. So sentence 20 itself is symbolized by ‘(—S7 V =82)’.
Sentence 21 also requires negation. It can be paraphrased as, ‘It is
not the case that either you get soup or you get salad’. Since this negates
the entire disjunction, we symbolize sentence 21 with ‘=(81 V Sy)’.
Sentence 22 is an exclusive or. We can break the sentence into two
parts. The first part says that you get one or the other. We symbolize
this as ‘(81 V 82)’. The second part says that you do not get both. We
can paraphrase this as: ‘It is not the case both that you get soup and
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that you get salad’. Using both negation and conjunction, we symbolize
this with ‘=(81 A $3)’. Now we just need to put the two parts together.
As we saw above, ‘but’ can usually be symbolized with ‘A’. Sentence
22 can thus be symbolized as ‘((S1 V S2) A =(S1 A S2))’.

This last example shows something important. Although the TFL
symbol ‘v’ always symbolizes inclusive or, we can symbolize an exclusive
or in TFL. We just have to use a few of our other symbols as well.

5.4 Conditional

Consider these sentences:

23. If Jean is in Paris, then Jean is in France.
24. Jean is in France only if Jean is in Paris.

Let’s use the following symbolization key:

P: Jean is in Paris.
F: Jean is in France

Sentence 23 is roughly of this form: ‘if P, then F’. We will use the sym-
bol ‘=’ to symbolize this ‘if..., then...’ structure. So we symbolize
sentence 23 by ‘(P — F)’. The connective is called THE CONDITIONAL.
Here, ‘P’ is called the ANTECEDENT of the conditional ‘(P — F)’, and
‘F’ is called the CONSEQUENT.

Sentence 24 is also a conditional. Since the word ‘if” appears in the
second half of the sentence, it might be tempting to symbolize this in the
same way as sentence 23. That would be a mistake. Your knowledge of
geography tells you that sentence 23 is unproblematically true: there is
no way for Jean to be in Paris that doesn’t involve Jean being in France.
But sentence 24 is not so straightforward: were Jean in Dieppe, Lyons,
or Toulouse, Jean would be in France without being in Paris, thereby
rendering sentence 24 false. Since geography alone dictates the truth
of sentence 23, whereas travel plans (say) are needed to know the truth
of sentence 24, they must mean different things.

In fact, sentence 24 can be paraphrased as ‘If Jean is in France,
then Jean is in Paris’. So we can symbolize it by ‘(F — P)’.

A sentence can be symbolized as o — % if it can be paraphra-
sed in English as ‘If A, then B’ or ‘A only if B’.




5.5. BICONDITIONAL 37

In fact, many English expressions can be represented using the condi-
tional. Consider:

25. For Jean to be in Paris, it is necessary that Jean be in France.

26. It is a necessary condition on Jean’s being in Paris that she be in
France.

27. For Jean to be in France, it is sufficient that Jean be in Paris.

28. It is a sufficient condition on Jean’s being in France that she be
in Paris.

If we think deeply about it, all four of these sentences mean the same as
‘If Jean is in Paris, then Jean is in France’. So they can all be symbolized
by ‘P — F’.

It is important to bear in mind that the connective ‘=’ tells us
only that, if the antecedent is true, then the consequent is true. It says
nothing about a causal connection between two events (for example).
In fact, we lose a huge amount when we use ‘=’ to symbolize English
conditionals. We will return to this in §§9.3 and 11.5.

5.5 Biconditional

Consider these sentences:

29. Laika is a dog only if she is a mammal
30. Laika is a dog if she is a mammal
31. Laika is a dog if and only if she is a mammal

We will use the following symbolization key:

D: Laika is a dog
M: Laika is a mammal

Sentence 2q, for reasons discussed above, can be symbolized by ‘D —
M.

Sentence 30 is importantly different. It can be paraphrased as, ‘If
Laika is a mammal then Laika is a dog’. So it can be symbolized by
‘M — D’.

Sentence 31 says something stronger than either 29 or 3o. It can be
paraphrased as ‘Laika is a dog if Laika is a mammal, and Laika is a dog
only if Laika is a mammal’. This is just the conjunction of sentences 29
and 3o0. So we can symbolize it as (D — M) A (M — D)’. We call this
a BICONDITIONAL, because it entails the conditional in both directions.
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We could treat every biconditional this way. So, just as we do not
need a new TFL symbol to deal with exclusive or, we do not really need a
new TFL symbol to deal with biconditionals. Because the biconditional
occurs so often, however, we will use the symbol ‘>’ for it. We can then
symbolize sentence 31 with the TFL sentence ‘D < M.

The expression ‘if and only if” occurs a lot especially in philosophy,
mathematics, and logic. For brevity, we can abbreviate it with the snap-
pier word ‘iff’. We will follow this practice. So ‘if” with only one ‘f” is the
English conditional. But ‘iff’ with two ‘f’s is the English biconditional.
Armed with this we can say:

A sentence can be symbolized as o < 9 if it can be paraphra-
sed in English as ‘A iff B’; that is, as ‘A if and only if B’.

A word of caution. Ordinary speakers of English often use ‘if ...,
then...” when they really mean to use something more like *...if and
only if ...”. Perhaps your parents told you, when you were a child: ‘if
you don’t eat your greens, you won’t get any dessert’. Suppose you ate
your greens, but that your parents refused to give you any dessert, on
the grounds that they were only committed to the conditional (roughly ‘if
you get dessert, then you will have eaten your greens’), rather than the
biconditional (roughly, ‘you get dessert iff you eat your greens’). Well,
a tantrum would rightly ensue. So, be aware of this when interpreting
people; but in your own writing, make sure you use the biconditional
iff you mean to.

5.6 Unless

We have now introduced all of the connectives of TFL. We can use them
together to symbolize many kinds of sentences. An especially difficult
case is when we use the English-language connective ‘unless’:

32. Unless you wear a jacket, you will catch a cold.
33. You will catch a cold unless you wear a jacket.

These two sentences are clearly equivalent. To symbolize them, we will
use the symbolization key:

J: You will wear a jacket.
D: You will catch a cold.
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Both sentences mean that if you do not wear a jacket, then you will catch
a cold. With this in mind, we might symbolize them as ‘-] — D’.

Equally, both sentences mean that if you do not catch a cold, then
you must have worn a jacket. With this in mind, we might symbolize
them as ‘=D — J’.

Equally, both sentences mean that either you will wear a jacket or
you will catch a cold. With this in mind, we might symbolize them as
‘JvD.

All three are correct symbolizations. Indeed, in chapter 11 we will
see that all three symbolizations are equivalent in TFL.

If a sentence can be paraphrased as ‘Unless A, B,’ then it can
be symbolized as ‘d vV %’

Again, though, there is a little complication. ‘Unless’ can be sym-
bolized as a conditional; but as we said above, people often use the con-
ditional (on its own) when they mean to use the biconditional. Equally,
‘unless’ can be symbolized as a disjunction; but there are two kinds
of disjunction (exclusive and inclusive). So it will not surprise you to
discover that ordinary speakers of English often use ‘unless’ to mean
something more like the biconditional, or like exclusive disjunction.
Suppose someone says: ‘T will go running unless it rains’. They proba-
bly mean something like ‘I will go running iff it does not rain’ (i.e. the
biconditional), or ‘either I will go running or it will rain, but not both’
(i.e. exclusive disjunction). Again: be aware of this when interpreting
what other people have said, but be precise in your writing.

Exercicios

A. Using the symbolization key given, symbolize each English sentence
in TFL.

M: Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

Those creatures are not men in suits.

Those creatures are men in suits, or they are not.
Those creatures are either gorillas or chimpanzees.
Those creatures are neither gorillas nor chimpanzees.

Ll
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If those creatures are chimpanzees, then they are neither gorillas
nor men in suits.

Unless those creatures are men in suits, they are either chimpan-
zees or they are gorillas.

B. Using the symbolization key given, symbolize each English sentence
in TFL.

DO W 0 M

9.

10.
11.
12.

Mister Ace was murdered.

The butler did it.

The cook did it.

The Duchess is lying.

Mister Edge was murdered.

The murder weapon was a frying pan.

TEEOEA

. Either Mister Ace or Mister Edge was murdered.

. If Mister Ace was murdered, then the cook did it.

. If Mister Edge was murdered, then the cook did not do it.

. Either the butler did it, or the Duchess is lying.

. The cook did it only if the Duchess is lying.

. If the murder weapon was a frying pan, then the culprit must

have been the cook.

. If the murder weapon was not a frying pan, then the culprit was

either the cook or the butler.

. Mister Ace was murdered if and only if Mister Edge was not

murdered.

The Duchess is lying, unless it was Mister Edge who was murde-
red.

If Mister Ace was murdered, he was done in with a frying pan.
Since the cook did it, the butler did not.

Of course the Duchess is lying!

C. Using the symbolization key given, symbolize each English sentence
in TFL.

1.

Ei: Ava is an electrician.

Ey: Harrison is an electrician.

Fi: Ava is a firefighter.

Fy: Harrison is a firefighter.

S1: Ava is satisfied with her career.

So: Harrison is satisfied with his career.

Ava and Harrison are both electricians.
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If Ava is a firefighter, then she is satisfied with her career.

Ava is a firefighter, unless she is an electrician.

Harrison is an unsatisfied electrician.

Neither Ava nor Harrison is an electrician.

Both Ava and Harrison are electricians, but neither of them find
it satisfying.

Harrison is satisfied only if he is a firefighter.

If Ava is not an electrician, then neither is Harrison, but if she
is, then he is too.

Ava is satisfied with her career if and only if Harrison is not
satisfied with his.

If Harrison is both an electrician and a firefighter, then he must
be satisfied with his work.

It cannot be that Harrison is both an electrician and a firefighter.
Harrison and Ava are both firefighters if and only if neither of
them is an electrician.

D. Using the symbolization key given, symbolize each English-language
sentence in TFL.

J1: John Coltrane played tenor sax.
Jo: John Coltrane played soprano sax.
J3: John Coltrane played tuba

M;: Miles Davis played trumpet
My: Miles Davis played tuba

A4

B oo

John Coltrane played tenor and soprano sax.

Neither Miles Davis nor John Coltrane played tuba.

John Coltrane did not play both tenor sax and tuba.

John Coltrane did not play tenor sax unless he also played so-
prano sax.

John Coltrane did not play tuba, but Miles Davis did.

Miles Davis played trumpet only if he also played tuba.

If Miles Davis played trumpet, then John Coltrane played at least
one of these three instruments: tenor sax, soprano sax, or tuba.
If John Coltrane played tuba then Miles Davis played neither
trumpet nor tuba.

Miles Davis and John Coltrane both played tuba if and only if
Coltrane did not play tenor sax and Miles Davis did not play
trumpet.
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E. Give a symbolization key and symbolize the following English sen-
tences in TFL.

e p e

5
6.

Alice and Bob are both spies.

If either Alice or Bob is a spy, then the code has been broken.
If neither Alice nor Bob is a spy, then the code remains unbroken.
The German embassy will be in an uproar, unless someone has
broken the code.

Either the code has been broken or it has not, but the German
embassy will be in an uproar regardless.

Either Alice or Bob is a spy, but not both.

F. Give a symbolization key and symbolize the following English sen-
tences in TFL.

1.

2.
3.

4.

5.

If there is food to be found in the pridelands, then Rafiki will talk
about squashed bananas.

Rafiki will talk about squashed bananas unless Simba is alive.
Rafiki will either talk about squashed bananas or he won’t, but
there is food to be found in the pridelands regardless.

Scar will remain as king if and only if there is food to be found
in the pridelands.

If Simba is alive, then Scar will not remain as king.

G. For each argument, write a symbolization key and symbolize all of
the sentences of the argument in TFL.

1.

If Dorothy plays the piano in the morning, then Roger wakes
up cranky. Dorothy plays piano in the morning unless she is
distracted. So if Roger does not wake up cranky, then Dorothy
must be distracted.

It will either rain or snow on Tuesday. If it rains, Neville will
be sad. If it snows, Neville will be cold. Therefore, Neville will
either be sad or cold on Tuesday.

If Zoog remembered to do his chores, then things are clean but
not neat. If he forgot, then things are neat but not clean. There-
fore, things are either neat or clean; but not both.

H. For each argument, write a symbolization key and symbolize the
argument as well as possible in TFL. The part of the passage in italics
is there to provide context for the argument, and doesn’t need to be
symbolized.

1.

It is going to rain soon. I know because my leg is hurting, and
my leg hurts if it’s going to rain.
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2. Spider-man tries to figure out the bad guy’s plan. If Doctor Octopus
gets the uranium, he will blackmail the city. I am certain of this
because if Doctor Octopus gets the uranium, he can make a dirty
bomb, and if he can make a dirty bomb, he will blackmail the
city.

3. A westerner tries to predict the policies of the Chinese government. If the
Chinese government cannot solve the water shortages in Beijing,
they will have to move the capital. They don’t want to move the
capital. Therefore they must solve the water shortage. But the
only way to solve the water shortage is to divert almost all the
water from the Yangzi river northward. Therefore the Chinese
government will go with the project to divert water from the south
to the north.

I. We symbolized an exclusive or using ‘V’, ‘A’, and ‘=’. How could you
symbolize an exclusive or using only two connectives? Is there any way
to symbolize an exclusive or using only one connective?
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The sentence ‘either apples are red, or berries are blue’ is a sentence of
English, and the sentence ‘(4 Vv B)’ is a sentence of TFL. Although we
can identify sentences of English when we encounter them, we do not
have a formal definition of ‘sentence of English’. But in this chapter,
we will offer a complete definition of what counts as a sentence of TFL.
This is one respect in which a formal language like TFL is more precise
than a natural language like English.

6.1 Expressions

We have seen that there are three kinds of symbols in TFL:

Atomic sentences ABC,....Z
with subscripts, as needed 41, By, Z1, Ag, Ags, J375, . . .

Connectives AV,
Brackets (,)
We define an EXPRESSION OF TFL as any string of symbols of TFL. Take

any of the symbols of TFL and write them down, in any order, and you
have an expression of TFL.

44
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6.2 Sentences

Of course, many expressions of TFL will be total gibberish. We want
to know when an expression of TFL amounts to a sentence.

Obviously, individual sentence letters like ‘4’ and ‘Gis’ should
count as sentences. (We’ll also call them atomic sentences.) We can
form further sentences out of these by using the various connectives.
Using negation, we can get ‘-4’ and ‘=G13’. Using conjunction, we can
get ‘(ANG13), (G13AA), (AANA), and (G13AG13)’. We could also apply
negation repeatedly to get sentences like ‘<=4’ or apply negation along
with conjunction to get sentences like ‘=(4 A G13)’ and ‘“~(G13 A ~G13)’.
The possible combinations are endless, even starting with just these
two sentence letters, and there are infinitely many sentence letters. So
there is no point in trying to list all the sentences one by one.

Instead, we will describe the process by which sentences can be
constructed. Consider negation: Given any sentence o of TFL, —df is a
sentence of TFL. (Why the funny fonts? We return to this in §7.3.)

We can say similar things for each of the other connectives. For
instance, if of and 9 are sentences of TFL, then (4 A &) is a sentence
of TFL. Providing clauses like this for all of the connectives, we arrive
at the following formal definition for a SENTENCE OF TFL:

1. Every sentence letter is a sentence.

o. If df is a sentence, then —d{ is a sentence.

If o1 and 9 are sentences, then (9 A %) is a sentence.
If o1 and 9 are sentences, then (f V 9B) is a sentence.
If 9 and 9 are sentences, then (1 — %) is a sentence.

If o and 9 are sentences, then (4 <> 9B) is a sentence.

T PP o @

Nothing else is a sentence.

Definitions like this are called inductive. inductive definitions begin
with some specifiable base elements, and then present ways to generate
indefinitely many more elements by compounding together previously
established ones. To give you a better idea of what an inductive defini-
tion is, we can give an inductive definition of the idea of an ancestor of
mine. We specify a base clause.
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¢ My parents are ancestors of mine.
and then offer further clauses like:

o If x is an ancestor of mine, then x’s parents are ancestors of mine.
¢ Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone is my
ancestor: just check whether she is the parent of the parent of. .. one of
my parents. And the same is true for our inductive definition of senten-
ces of TFL. Just as the inductive definition allows complex sentences
to be built up from simpler parts, the definition allows us to decom-
pose sentences into their simpler parts. Once we get down to sentence
letters, then we know we are ok.

Let’s consider some examples.

Suppose we want to know whether or not ‘-—-D’ is a sentence
of TFL. Looking at the second clause of the definition, we know that
‘=—=D’ is a sentence if ‘=—D’ is a sentence. So now we need to ask
whether or not ‘-—D’ is a sentence. Again looking at the second clause
of the definition, ‘=—D’ is a sentence if ‘=D’ is. So, ‘=D’ is a sentence
if ‘D’ is a sentence. Now ‘D’ is a sentence letter of TFL, so we know
that ‘D’ is a sentence by the first clause of the definition. So for a com-
pound sentence like ‘=——D’, we must apply the definition repeatedly.
Eventually we arrive at the sentence letters from which the sentence is
built up.

Next, consider the example ‘~(P A =(=Q V R))’. Looking at the
second clause of the definition, this is a sentence if ‘(P A =(=Q V R))
is, and this is a sentence if both ‘P’ and ‘~(—Q V R)’ are sentences. The
former is a sentence letter, and the latter is a sentence if ‘(—=Q Vv R)’ is
a sentence. It is. Looking at the fourth clause of the definition, this is
a sentence if both ‘=Q’ and ‘R’ are sentences, and both are!

Ultimately, every sentence is constructed nicely out of sentence
letters. When we are dealing with a sentence other than a sentence
letter, we can see that there must be some sentential connective that
was introduced last, when constructing the sentence. We call that con-
nective the MAIN LOGICAL OPERATOR of the sentence. In the case of
‘=——=D’, the main logical operator is the very first ‘=’ sign. In the case
of (P A =(=Q V R)), the main logical operator is ‘A’. In the case of
‘(nE V F) — —~G)’, the main logical operator is ‘—’.

As a general rule, you can find the main logical operator for a
sentence by using the following method:
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)

o If the first symbol in the sentence is ‘—~’, then that is the main
logical operator

* Otherwise, start counting the brackets. For each open-bracket,
i.e. °(’, add 1; for each closing-bracket, i.e. ), subtract 1. When
your count is at exactly 1, the first operator you hit (apart from
a ‘=’) is the main logical operator.

(Note: if you do use this method, then make sure to include all the
brackets in the sentence, rather than omitting some as per the conven-
tions of §6.3!)

The inductive structure of sentences in TFL will be important when
we consider the circumstances under which a particular sentence would
be true or false. The sentence ‘~—=—D’ is true if and only if the sentence
‘=D is false, and so on through the structure of the sentence, until we
arrive at the atomic components. We will return to this point in Part III.

The inductive structure of sentences in TFL also allows us to give
a formal definition of the scope of a negation (mentioned in §5.2). The
scope of a ‘=’ is the subsentence for which ‘=’ is the main logical ope-
rator. Consider a sentence like:

(P A(~(RAB) < Q))

which was constructed by conjoining ‘P’ with ‘(=(R A B) < Q).
This last sentence was constructed by placing a biconditional between
‘(R A B) and ‘Q’. The former of these sentences—a subsentence of
our original sentence—is a sentence for which ‘=’ is the main logical
operator. So the scope of the negation is just ‘=(RAB)’. More generally:

The scorPE of a connective (in a sentence) is the subsentence
for which that connective is the main logical operator.

6.3 Bracketing conventions

Strictly speaking, the brackets in ‘(Q A R)’ are an indispensable part
of the sentence. Part of this is because we might use ‘(Q A R) as a
subsentence in a more complicated sentence. For example, we might
want to negate ‘(Q A R)’, obtaining ‘-(Q A R)’. If we just had ‘Q A R’
without the brackets and put a negation in front of it, we would have
‘=0 A R’. It is most natural to read this as meaning the same thing as
‘(-Q A R), but as we saw in §5.2, this is very different from ‘-(Q A R)’.
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Strictly speaking, then, ‘Q A R’ is not a sentence. It is a mere expres-
sion.

When working with TFL, however, it will make our lives easier if
we are sometimes a little less than strict. So, here are some convenient
conventions.

First, we allow ourselves to omit the outermost brackets of a sen-
tence. Thus we allow ourselves to write ‘Q A R’ instead of the sentence
‘(QAR)’. However, we must remember to put the brackets back in, when
we want to embed the sentence into a more complicated sentence!

Second, it can be a bit painful to stare at long sentences with many
nested pairs of brackets. To make things a bit easier on the eyes, we will
allow ourselves to use square brackets, " and ‘], instead of rounded
ones. So there is no logical difference between ‘(P v Q)’ and ‘[P V Q7
for example.

Combining these two conventions, we can rewrite the unwieldy sen-

tence
((H—>1DVv({I - H)A(JVK))

rather more clearly as follows:
[(H->DvI - H]|A({JVEK)

The scope of each connective is now much easier to pick out.

Exercicios

A. For each of the following: (a) Is it a sentence of TFL, strictly spea-
king? (b) Is it a sentence of TFL, allowing for our relaxed bracketing
conventions?

(4)

J374 NV = J374

_|_|_|_|F

-AS

(G A=G)

(A—> (AAN-F))V(D o E)
(Z e S)-> WA VX]
(Fe-D— J)v(CAD)

PN o ® b

B. Are there any sentences of TFL that contain no sentence letters?
Explain your answer.
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C. What is the scope of each connective in the sentence

[(H—>I)vUI - H]|A({JVEK)
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Uso e mencdo

In this Part, we have talked a lot about sentences. So we should pause
to explain an important, and very general, point.

7.1 Quotation conventions

Consider these two sentences:

¢ Justin Trudeau is the Prime Minister.
¢ The expression Justin Trudeau’ is composed of two uppercase
letters and eleven lowercase letters

When we want to talk about the Prime Minister, we use his name. When
we want to talk about the Prime Minister’s name, we meniion that name,
which we do by putting it in quotation marks.

There is a general point here. When we want to talk about things
in the world, we just use words. When we want to talk about words,
we typically have to mention those words. We need to indicate that
we are mentioning them, rather than using them. To do this, some
convention is needed. We can put them in quotation marks, or display
them centrally in the page (say). So this sentence:

* Justin Trudeau’ is the Prime Minister.

says that some expression is the Prime Minister. That’s false. The man
is the Prime Minister; his zame isn’t. Conversely, this sentence:

e Justin Trudeau is composed of two uppercase letters and eleven
lowercase letters.
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also says something false: Justin Trudeau is a man, made of flesh rather
than letters. One final example:

e “‘Justin Trudeau’” is the name of ‘Justin Trudeau’.

On the left-hand-side, here, we have the name of a name. On the right
hand side, we have a name. Perhaps this kind of sentence only occurs
in logic textbooks, but it is true nonetheless.

Those are just general rules for quotation, and you should observe
them carefully in all your work! To be clear, the quotation-marks here
do not indicate indirect speech. They indicate that you are moving
from talking about an object, to talking about the name of that object.

7.2 Object language and metalanguage

These general quotation conventions are of particular importance for
us. After all, we are describing a formal language here, TFL, and so
we are often mentioning expressions from TFL.

When we talk about a language, the language that we are talking
about is called the OBJECT LANGUAGE. The language that we use to talk
about the object language is called the METALANGUAGE.

For the most part, the object language in this chapter has been
the formal language that we have been developing: TFL. The meta-
language is English. Not conversational English exactly, but English
supplemented with some additional vocabulary which helps us to get
along.

Now, we have used uppercase letters as sentence letters of TFL:

A, B, C, Z, A1, By, Ags, J375, . . .
These are sentences of the object language (TFL). They are not sen-
tences of English. So we must not say, for example:
* D is a sentence letter of TFL.

Obviously, we are trying to come out with an English sentence that
says something about the object language (TFL), but ‘D’ is a sentence
of TFL, and not part of English. So the preceding is gibberish, just like:

* Schnee ist weil} is a German sentence.
What we surely meant to say, in this case, is:

¢ ‘Schnee ist wei3’ is a German sentence.
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Equally, what we meant to say above is just:
* ‘D’ is a sentence letter of TFL.

The general point is that, whenever we want to talk in English about
some specific expression of TFL, we need to indicate that we are menti-
oning the expression, rather than using it. We can either deploy quota-
tion marks, or we can adopt some similar convention, such as placing
it centrally in the page.

7.3 Metavariables

However, we do not just want to talk about specific expressions of TFL.
We also want to be able to talk about any arbitrary sentence of TFL.
Indeed, we had to do this in §6.2, when we presented the inductive
definition of a sentence of TFL. We used uppercase script letters to do
this, namely:

A4, RB,6,9,. ..

These symbols do not belong to TFL. Rather, they are part of our
(augmented) metalanguage that we use to talk about any expression
of TFL. To repeat the second clause of the inductive definition of a
sentence of TFL, we said:

o. If o is a sentence, then =9l is a sentence.
This talks about arbitrary sentences. If we had instead offered:
e If ‘A’ is a sentence, then ‘=4’ is a sentence.

this would not have allowed us to determine whether ‘=B’ is a sentence.
To emphasize, then:

‘e’ is a symbol (called a METAVARIABLE) in augmented English,
which we use to talk about any TFL expression. ‘4’ is a parti-
cular sentence letter of TFL.

But this last example raises a further complication for our quotation
conventions. We have not included any quotation marks in the second
clause of our inductive definition. Should we have done so?

The problem is that the expression on the right-hand-side of this
rule is not a sentence of English, since it contains ‘=’. So we might try
to write:
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o’. If d is a sentence, then ‘—¢{’ is a sentence.

But this is no good: ‘~d’ is not a TFL sentence, since ‘4’ is a symbol
of (augmented) English rather than a symbol of TFL.
What we really want to say is something like this:

2”. If ol is a sentence, then the result of concatenating the symbol
‘= with the sentence ¢ is a sentence.

This is impeccable, but rather long-winded. But we can avoid long-
windedness by creating our own conventions. We can perfectly well
stipulate that an expression like ‘~d’ should simply be read directly
in terms of rules for concatenation. So, officially, the metalanguage
expression ‘—gf’ simply abbreviates:

C_

the result of concatenating the symbol ‘=’ with the sen-
tence o

and similarly, for expressions like ‘(s A B)’, ‘(o vV B)’, etc.

7.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments, and
that will be our concern in Parts III and IV. In English, the premises
of an argument are often expressed by individual sentences, and the
conclusion by a further sentence. Since we can symbolize English sen-
tences, we can symbolize English arguments using TFL. Thus we might
ask whether the argument whose premises are the TFL sentences ‘4’
and ‘4 — C’, and whose conclusion is the TFL sentence ‘C’, is valid.
However, it is quite a mouthful to write that every time. So instead we
will introduce another bit of abbreviation. This:

A, 49, ..., A, .. 6

abbreviates:

the argument with premises o1, Ao, . . ., s, and conclusion

6

To avoid unnecessary clutter, we will not regard this as requiring quo-
tation marks around it. (Note, then, that *."." is a symbol of our aug-
mented metalanguage, and not a new symbol of TFL.)
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Any sentence of TFL is composed of sentence letters, possibly com-
bined using sentential connectives. The truth value of the compound
sentence depends only on the truth value of the sentence letters that
comprise it. In order to know the truth value of ‘(D A E)’, for instance,
you only need to know the truth value of ‘D’ and the truth value of ‘E’.
We introduced five connectives in chapter 5, so we simply need to
explain how they map between truth values. For convenience, we will
abbreviate ‘True’ with ‘T’ and ‘False’ with ‘F’. (But just to be clear, the
two truth values are True and False; the truth values are not leiters!)

Negation. For any sentence of: If o is true, then o is false. If -
is true, then o is false. We can summarize this in the characteristic truth
table for negation:

-

oo R
5|
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Conjunction. For any sentences of and 9B, AR is true if and only
if both o and % are true. We can summarize this in the characteristic
truth table for conjunction:

| AAR

oo R
oo 9
oo >

Note that conjunction is symmetrical. The truth value for o A8 is always
the same as the truth value for % A .

Disjunction. Recall that ‘v’ always represents inclusive or. So, for
any sentences s and 9B, VA is true if and only if either of or % is true.
We can summarize this in the characteristic truth table for disjunction:

d B|AvSR
T T| T
T F| T
F T | T
F F| F

Like conjunction, disjunction is symmetrical.

Conditional. We'’re just going to come clean and admit it: Condi-
tionals are a right old mess in TFL. Exactly how much of a mess they
are is philosophically contentious. We’ll discuss a few of the subtleties in
§§9.3 and 11.5. For now, we are going to stipulate the following: s — %
is false if and only if o is true and 9B is false. We can summarize this
with a characteristic truth table for the conditional.

A %\91-&/3
T T T
T F F
F T T
F F T

The conditional is asymmetrical. You cannot swap the antecedent and
consequent without changing the meaning of the sentence, because
d — % has a very different truth table from % — d.
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Biconditional. Since a biconditional is to be the same as the con-
junction of a conditional running in each direction, we will want the
truth table for the biconditional to be:

d B|deoR
T T| T
T F| F
F T| F
F F| T

Unsurprisingly, the biconditional is symmetrical.
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9.1 The idea of truth-functionality

Let’s introduce an important idea.

A connective is TRUTH-FUNCTIONAL iff the truth value of a sen-
tence with that connective as its main logical operator is uni-
quely determined by the truth value(s) of the constituent sen-
tence(s).

Every connective in TFL is truth-functional. The truth value of a
negation is uniquely determined by the truth value of the unnegated
sentence. The truth value of a conjunction is uniquely determined by
the truth value of both conjuncts. The truth value of a disjunction is
uniquely determined by the truth value of both disjuncts, and so on.
To determine the truth value of some TFL sentence, we only need to
know the truth value of its components.

This is what gives TFL its name: it is truth-functional logic.

In plenty of languages there are connectives that are not truth-
functional. In English, for example, we can form a new sentence from
any simpler sentence by prefixing it with ‘It is necessarily the case
that...’. The truth value of this new sentence is not fixed solely by the
truth value of the original sentence. For consider two true sentences:
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1. 2+2=4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessarily the case that 2 + 2 = 4, it is not necessarily the
case that Shostakovich wrote fifteen string quartets. If Shostakovich
had died earlier, he would have failed to finish Quartet no. 15; if he
had lived longer, he might have written a few more. So ‘It is necessarily
the case that...” is a connective of English, but it is not truth-functional.

9.2 Symbolizing versus translating

All of the connectives of TFL are truth-functional, but more than that:
they really do nothing du¢ map us between truth values.

When we symbolize a sentence or an argument in TFL, we ignore
everything besides the contribution that the truth values of a compo-
nent might make to the truth value of the whole. There are subtleties
to our ordinary claims that far outstrip their mere truth values. Sar-
casm; poetry; snide implicature; emphasis; these are important parts of
everyday discourse, but none of this is retained in TFL. As remarked
in §5, TFL cannot capture the subtle differences between the following
English sentences:

Dana is a logician and Dana is a nice person
u, i ici i i T
Although Dana is a logician, Dana is a nice person
i ici i i i r
Dana is a logician despite being a nice person
Dana is a nice person, but also a logician
5. Dana’s being a logician notwithstanding, he is a nice person

B P H

All of the above sentences will be symbolized with the same TFL sen-
tence, perhaps ‘L A N’.

We keep saying that we use TFL sentences to symbolize English sen-
tences. Many other textbooks talk about translating English sentences
into TFL. However, a good translation should preserve certain facets of
meaning, and—as we have just pointed out—TFL just cannot do that.
This is why we will speak of symbolizing English sentences, rather than
of translating them.

This affects how we should understand our symbolization keys.
Consider a key like:

L: Dana is a logician.
N: Dana is a nice person.
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Other textbooks will understand this as a stipulation that the TFL sen-
tence ‘L’ should mean that Dana is a logician, and that the TFL sentence
‘N’ should mean that Dana is a nice person, but TFL just is totally une-
quipped to deal with meaning. The preceding symbolization key is doing
no more and no less than stipulating that the TFL sentence ‘L’ should
take the same truth value as the English sentence ‘Dana is a logician’
(whatever that might be), and that the TFL sentence ‘N’ should take
the same truth value as the English sentence ‘Dana is a nice person’
(whatever that might be).

When we treat a TFL sentence as symbolizing an English sen-
tence, we are stipulating that the TFL sentence is to take the
same truth value as that English sentence.

9.3 Indicative versus subjunctive
conditionals

We want to bring home the point that TFL can only deal with truth
functions by considering the case of the conditional. When we introdu-
ced the characteristic truth table for the material conditional in §8, we
did not say anything to justify it. Let’s now offer a justification, which
follows Dorothy Edgington.*

Suppose that Lara has drawn some shapes on a piece of paper, and
coloured some of them in. We have not seen them, but nevertheless
claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

® &

In this case, our claim is surely true. Shapes C and D are not grey, and
so can hardly present counterexamples to our claim. Shape A is grey, but
fortunately it is also circular. So our claim has no counterexamples. It

1Dorothy Edgington, ‘Conditionals’, 2006, in the Stanford Encyclopedia of
Philosophy (http:/plato.stanford.edw/entries/conditionals/).
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must be true. That means that each of the following instances of our
claim must be true too:

o If A is grey, then it is circular (true antecedent, true consequent)

 If Cis grey, then it is circular(false antecedent, true consequent)

» If D is grey, then it is circular (false antecedent, false
consequent)

However, if Lara had drawn a fourth shape, thus:

ORAOR0

then our claim would be false. So it must be that this claim is false:

o If B is grey, then it is circular (true antecedent, false
consequent)

Now, recall that every connective of TFL has to be truth-functional.
This means that merely the truth values of the antecedent and conse-
quent must uniquely determine the truth value of the conditional as a
whole. Thus, from the truth values of our four claims—which provide
us with all possible combinations of truth and falsity in antecedent and
consequent—we can read off the truth table for the material conditio-
nal.

What this argument shows is that ‘=’ is the bdest candidate for a
truth-functional conditional. Otherwise put, it is the best conditional that
TFL can provide. But is it any good, as a surrogate for the conditionals
we use in everyday language? Consider two sentences:

1. If Mitt Romney had won the 2012 election, then he would have
been the 45th President of the USA.

2. If Mitt Romney had won the 2012 election, then he would have
turned into a helium-filled balloon and floated away into the night
sky.

Sentence 1 is true; sentence 2 is false, but both have false antecedents
and false consequents. So the truth value of the whole sentence is not
uniquely determined by the truth value of the parts. Do not just blithely
assume that you can adequately symbolize an English ‘if ..., then ...’
with TFL’s ‘—’.

The crucial point is that sentences 1 and 2 employ subjunctive con-
ditionals, rather than indicative conditionals. They ask us to imagine
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something contrary to fact—Mitt Romney lost the 2012 election—and
then ask us to evaluate what would have happened in that case. Such
considerations just cannot be tackled using ‘—’.

We will say more about the difficulties with conditionals in §11.5.
For now, we will content ourselves with the observation that ‘—’ is the
only candidate for a truth-functional conditional for TFL, but that many
English conditionals cannot be represented adequately using ‘—’. TFL
is an intrinsically limited language.
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So far, we have considered assigning truth values to TFL sentences
indirectly. We have said, for example, that a TFL sentence such as ‘B’
is to take the same truth value as the English sentence ‘Big Ben is in
London’ (whatever that truth value may be), but we can also assign
truth values directly. We can simply stipulate that ‘B’ is to be true, or
stipulate that it is to be false.

A VALUATION is any assignment of truth values to particular
sentence letters of TFL.

The power of truth tables lies in the following. Each row of a truth
table represents a possible valuation. The entire truth table represents
all possible valuations; thus the truth table provides us with a means
to calculate the truth values of complex sentences, on each possible
valuation. This is easiest to explain by example.

63



64 CAPITULO 10. TABELAS DE VERDADE COMPLETAS

10.1 A worked example
Consider the sentence ‘(H A I) — H’. There are four possible ways to
assign True and False to the sentence letter ‘A’ and ‘I’—four possible

valuations—which we can represent as follows:

| (HAD)>H

I | ey

1
T
F
T
F

To calculate the truth value of the entire sentence ‘(H A I) — H’,
we first copy the truth values for the sentence letters and write them
underneath the letters in the sentence:

H 1| HAN)->H
T T|T T T
T F| T F T
F T|F T F
F F| F F F

Now consider the subsentence ‘(H A I)’. This is a conjunction, (o A
9%B), with ‘H’ as o and with ‘I’ as 9. The characteristic truth table
for conjunction gives the truth conditions for any sentence of the form
(oA A %B), whatever o and %8 might be. It represents the point that a
conjunction is true iff both conjuncts are true. In this case, our conjuncts
are just ‘A’ and ‘I’. They are both true on (and only on) the first line
of the truth table. Accordingly, we can calculate the truth value of the
conjunction on all four rows.

ANB
H I | HAI)—>H
T T| TTT T
T F TFF T
F T| FFT F
F F| FFF F

Now, the entire sentence that we are dealing with is a conditional,
A — 9B, with ‘(H AT) as of and with ‘H’ as 9. On the second row, for
example, ‘(H A I) is false and ‘H’ is true. Since a conditional is true
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when the antecedent is false, we write a ‘T’ in the second row underne-
ath the conditional symbol. We continue for the other three rows and
get this:

ad —RB
H I |HAN)—H
T T T TT
T F F TT
F T F TF
F F F TF

The conditional is the main logical operator of the sentence, so the
column of “T’s underneath the conditional tells us that the sentence
‘(H ANI) = H’ is true regardless of the truth values of ‘A’ and ‘I’.
They can be true or false in any combination, and the compound sen-
tence still comes out true. Since we have considered all four possible
assignments of truth and falsity to ‘A’ and ‘I’—since, that is, we have
considered all the different valuations—we can say that ‘(H AI) - H’
is true on every valuation.

In this example, we have not repeated all of the entries in every
column in every successive table. When actually writing truth tables
on paper, however, it is impractical to erase whole columns or rewrite
the whole table for every step. Although it is more crowded, the truth
table can be written in this way:

H 1| (HAN)—H
T T| TTTTT
T F| TFFTT
F T| FFTTF
F F| FFFTF

Most of the columns underneath the sentence are only there for book-
keeping purposes. The column that matters most is the column under-
neath the main logical operator for the sentence, since this tells you the
truth value of the entire sentence. We have emphasized this, by putting
this column in bold. When you work through truth tables yourself, you
should similarly emphasize it (perhaps by highlighting).
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10.2 Building complete truth tables

A COMPLETE TRUTH TABLE has a line for every possible assignment of
True and False to the relevant sentence letters. Each line represents
a valuation, and a complete truth table has a line for all the different
valuations.

The size of the complete truth table depends on the number of dif-
ferent sentence letters in the table. A sentence that contains only one
sentence letter requires only two rows, as in the characteristic truth ta-
ble for negation. This is true even if the same letter is repeated many
times, as in the sentence ‘[(C <> C) = C] A =(C — C)’. The complete
truth table requires only two lines because there are only two possibili-
ties: ‘C’ can be true or it can be false. The truth table for this sentence
looks like this:

C | (CoC)=CIA-(C—C)
T| TTT TT FF TTT
F| FTF FF FF FTF

Looking at the column underneath the main logical operator, we see
that the sentence is false on both rows of the table; i.e., the sentence
is false regardless of whether ‘C’ is true or false. It is false on every
valuation.

A sentence that contains two sentence letters requires four lines
for a complete truth table, as in the characteristic truth tables for our
binary connectives, and as in the complete truth table for (HAI) — H’.

A sentence that contains three sentence letters requires eight lines:

MA(NVP)
TTTTT
TTTTF
TTFTT
TFFFF
FFTTT
FFTTF
FFFTT
FFFFF

R RS RS R EE NN
R R R (P
SO R Y| Y

From this table, we know that the sentence ‘M A (N V P)’ can be true
or false, depending on the truth values of ‘M’, ‘N’, and ‘P’.

A complete truth table for a sentence that contains four different
sentence letters requires 16 lines. Five letters, 32 lines. Six letters, 64
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lines. And so on. To be perfectly general: If a complete truth table has
n different sentence letters, then it must have 2" lines.

In order to fill in the columns of a complete truth table, begin with
the right-most sentence letter and alternate between ‘I’ and ‘F’. In the
next column to the left, write two “I’s, write two ‘F’s, and repeat. For
the third sentence letter, write four “I’s followed by four ‘F’s. This yields
an eight line truth table like the one above. For a 16 line truth table, the
next column of sentence letters should have eight “I"’s followed by eight
‘F’s. For a 32 line table, the next column would have 16 “T’s followed
by 16 ‘F’s, and so on.

10.3 More about brackets
Consider these two sentences:

((AANB)AC)
(AAN(BAQ))

These are truth functionally equivalent. Consequently, it will never
make any difference from the perspective of truth value — which is all
that TFL cares about (see §9) — which of the two sentences we assert
(or deny). Even though the order of the brackets does not matter as to
their truth, we should not just drop them. The expression

ANBAC

is ambiguous between the two sentences above. The same observation
holds for disjunctions. The following sentences are logically equivalent:

((AvB)v ()
(Av(BV(Q))

But we should not simply write:
AVvBvVC

In fact, it is a specific fact about the characteristic truth table of v and
A that guarantees that any two conjunctions (or disjunctions) of the
same sentences are truth functionally equivalent, however you place
the brackets. This is only true of conjunctions and disjunctions, however.
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The following two sentences have different truth tables:

(4—- B)—> 0)
(4—- (B —-0))

So if we were to write:
A— B—->C

it would be dangerously ambiguous. Leaving out brackets in this case
would be disastrous. Equally, these sentences have different truth tables:

(AvB)AC)
(Av (BAQC))

So if we were to write:
AVBAC

it would be dangerously ambiguous. Never write this. The moral is:
never drop brackets (except the outermost ones).

Exercicios

A. Offer complete truth tables for each of the following:

1. A— A4

C —-C

(4 < B) & =(4 < -B)
(A—> B)v(B— A)
(ANB) —> (BV A)
-(AV B) & (=A A =B)
[(AAB)A=(AAB)|AC
[(AAB)AC]— B

9. =[(C Vv 4) vV B]

O o ® P

B. Check all the claims made in introducing the new notational con-
ventions in §10.3, i.e. show that:

1. ‘((AAB)AC) and ‘(4 A (B A C)) have the same truth table

2. ‘((Av B)VvC) and (4V (BV (C)) have the same truth table

3. ((AV B)AC) and (4 V (B A C)) do not have the same truth
table
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4. ‘(4 > B) —» C) and (4 — (B — ())’ do not have the same
truth table

Also, check whether:
5 ‘(A e B) & C) and ‘(4 & (B < (C)) have the same truth table

C. Write complete truth tables for the following sentences and mark the
column that represents the possible truth values for the whole sentence.

(S o (P —0S))
S[(XAY)V(XVY)]

(A— B) & (=B < —4)

[C o (DVE)]A-C

5 (GA(BAH)) < (GV(BV H))

P H

D. Write complete truth tables for the following sentences and mark the
column that represents the possible truth values for the whole sentence.

(DA-D)—> G
(=PV-M)—>M
—|—|(—|A/\—|B)
[(DAR)—>I]—> —=(DVR)
=[(D & 0) & A] - (=D A 0)

S 2 oM

If you want additional practice, you can construct truth tables for
any of the sentences and arguments in the exercises for the previous
chapter.



CAPITULO 11

Conceitos
semanticos

In the previous section, we introduced the idea of a valuation and
showed how to determine the truth value of any TFL sentence, on any
valuation, using a truth table. In this section, we will introduce some
related ideas, and show how to use truth tables to test whether or not

they apply.
11.1 Tautologies and contradictions
In §3, we explained necessary truth and necessary falsity. Both notions

have surrogates in TFL. We will start with a surrogate for necessary
truth.

ol is a TAUTOLOGY iff it is true on every valuation.

We can determine whether a sentence is a tautology just by using
truth tables. If the sentence is true on every line of a complete truth
table, then it is true on every valuation, so it is a tautology. In the
example of §10, (H A I) — H’ is a tautology.

This is only, though, a surrogate for necessary truth. There are
some necessary truths that we cannot adequately symbolize in TFL.
An example is 2+ 2 = 4’. This must be true, but if we try to symbolize
it in TFL, the best we can offer is an sentence letter, and no sentence

70
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letter is a tautology. Still, if we can adequately symbolize some English
sentence using a TFL sentence which is a tautology, then that English
sentence expresses a necessary truth.

We have a similar surrogate for necessary falsity:

ol is a CONTRADICTION (in TFL) iff it is false on every valuation.

We can determine whether a sentence is a contradiction just by
using truth tables. If the sentence is false on every line of a complete
truth table, then it is false on every valuation, so it is a contradiction.
In the example of §10, ‘[(C < C) = C]A—=(C — C)’ is a contradiction.

11.2 Equivalence

Here is a similar useful notion:

ol and 9B are EQUIVALENT (in TFL) iff, for every valuation, their
truth values agree, i.e. if there is no valuation in which they have
opposite truth values.

We have already made use of this notion, in effect, in §10.3; the
point was that (4AAB)AC’ and ‘AA (B A C)’ are equivalent. Again, it is
easy to test for equivalence using truth tables. Consider the sentences
‘=(PvQ) and ‘~“PA-Q’. Are they equivalent? To find out, we construct
a truth table.

Q| -@vQ) | -Pr-Q
T|FTTT | FTFFT
F|FTTF | FTFTF
T
F

FFTT | TFFFT
TFFF | TFTTF

oo N

Look at the columns for the main logical operators; negation for the
first sentence, conjunction for the second. On the first three rows, both
are false. On the final row, both are true. Since they match on every
row, the two sentences are equivalent.



72 CAPITULO 11. CONCEITOS SEMANTICOS

11.3 Satisfiability

In §3, we said that sentences are jointly possible iff it is possible for all
of them to be true at once. We can offer a surrogate for this notion too:

Ay, Ao, ..., d, are JOINTLY SATISFIABLE (in TFL) iff there is some
valuation which makes them all true.

Derivatively, sentences are JOINTLY UNSATISFIABLE if there is no
valuation that makes them all true. Again, it is easy to test for joint
satisfiability using truth tables.

11.4 Entailment and validity

The following idea is closely related to that of joint satisfiability:

The sentences 9f1, Ao, ..., 9, ENTAIL (in TFL) the sentence €
if there is no valuation of the sentence letters which makes all
of sy, o, ..., 9, true and 6 false.

Again, it is easy to test this with a truth table. Let us check whether
‘oL — (J vV L) and ‘~L’ entail ‘J’, we simply need to check whether
there is any valuation which makes both ‘-L — (/ vV L)’ and ‘=L’ true
whilst making ‘ J’ false. So we use a truth table:

L|-~L>(VvL) | -L| ]
T|FTTTTT |[FT| T
F|TFTTTF | TF | T
F
F

T/ FTTFTT | FT
F|TFFFFF | TF

oo S~

The only row on which both‘-L — (J Vv L)’ and ‘~L’ are true is the
second row, and that is a row on which ‘J’ is also true. So ‘=L —
(J VL) and ‘=L’ entail ‘] .

We now make an important observation:

If od1, A, ..., 9, entail €, in TFL then 41, o,...,d, .. 6 is
valid.
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Here’s why. If oy, do, ..., d, entail €, then there is no valuation
which makes all of o, dy, . . ., o, true and also makes 6 false. Any case
in which all of oy, dy, ..., d, are true and € is false would generate a
valuation with this property: take the truth value of any sentence letter
to be just the truth value the corresponding sentence in that case. Since
there is no such valuation, there is no case in which all of 1, oo, ..., s,
are true and 6 is false. But this is just what it takes for an argument,
with premises oy, o, . . ., s, and conclusion 6, to be valid!

In short, we have a way to test for the validity of English arguments.
First, we symbolize them in TFL, as having premises sl1, o, . . ., s,, and
conclusion €. Then we test for entailment in TFL using truth tables.

11.5 The limits of these tests

We have reached an important milestone: a test for the validity of argu-
ments! However, we should not get carried away just yet. It is important
to understand the limits of our achievement. We will illustrate these li-
mits with three examples.

First, consider the argument:

1. Daisy has four legs. So Daisy has more than two legs.

To symbolize this argument in TFL, we would have to use two different
sentence letters—perhaps ‘#’ and ‘7’—for the premise and the conclu-
sion respectively. Now, it is obvious that ‘/’ does not entail ‘7”. The
English argument surely seems valid, though!

Second, consider the sentence:

2. Jan is neither bald nor not-bald.

To symbolize this sentence in TFL, we would offer something like ‘= J A
—= /. This a contradiction (check this with a truth-table), but sentence
2 does not itself seem like a contradiction; for we might have happily
go on to add Jan is on the borderline of baldness’!

Third, consider the following sentence:

3. It’s not the case that, if God exists, She answers malevolent
prayers.

Symbolizing this in TFL, we would offer something like ‘+(G — M)’.
Now, ‘(G — M)’ entails ‘G’ (again, check this with a truth table). So
if we symbolize sentence 3 in TFL, it seems to entail that God exists.
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But that’s strange: surely even an atheist can accept sentence 3, without
contradicting herself!

One lesson of this is that the symbolization of g as ‘+(G — M)’
shows that 3 does not express what we intend. Perhaps we should reph-
rase it as

3. If God exists, She does not answer malevolent prayers.

and symbolize 3 as ‘G — —M’. Now, if atheists are right, and there
is no God, then ‘G’ is false and so ‘G — —M’ is true, and the puzzle
disappears. However, if ‘G’ is false, ‘G — M’, i.e. ‘If God exists, She
answers malevolent prayers’, is also true!

In different ways, these four examples highlight some of the li-
mits of working with a language (like TFL) that can only handle truth-
functional connectives. Moreover, these limits give rise to some inte-
resting questions in philosophical logic. The case of Jan’s baldness (or
otherwise) raises the general question of what logic we should use when
dealing with vague discourse. The case of the atheist raises the question
of how to deal with the (so-called) paradoxes of the material conditional.
Part of the purpose of this course is to equip you with the tools to ex-
plore these questions of philosophical logic. But we have to walk before
we can run; we have to become proficient in using TFL, before we can
adequately discuss its limits, and consider alternatives.

11.6 The double-turnstile

We are going to use the notion of entailment rather a lot in this book.
It will help us, then, to introduce a symbol that abbreviates it. Rather
than saying that the TFL sentences d1, oy, ... and o, together entail
‘6, we will abbreviate this by:

A, Ay, ..., A, EB

The symbol ‘¢’ is known as the double turnstile, since it looks like a
turnstile with two horizontal beams.

Let’s’ be clear. ‘¢’ is not a symbol of TFL. Rather, it is a symbol
of our metalanguage, augmented English (recall the difference between
object language and metalanguage from §7). So the metalanguage sen-
tence:

e PP—-Q0¢kQ
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is just an abbreviation for the English sentence:
o The TFL sentences ‘P’ and ‘P — Q’ entail ‘Q’

Note that there is no limit on the number of TFL sentences that can
be mentioned before the symbol ‘F’. Indeed, we can even consider the
limiting case:

EB

This says that there is no valuation which makes all the sentences men-
tioned on the left hand side of ‘¢’ true whilst making € false. Since no
sentences are mentioned on the left hand side of ‘¢’ in this case, this
just means that there is no valuation which makes 6 false. Otherwise
put, it says that every valuation makes € true. Otherwise put, it says
that 6 is a tautology. Equally:

AE

says that ¢ is a contradiction.

11.7 ‘¢’ versus ‘=’

We now want to compare and contrast ‘€’ and ‘—=’.

Observe: o £ 6 iff there is no valuation of the sentence letters that
makes o true and 6 false.

Observe: 9§ — B is a tautology iff there is no valuation of the
sentence letters that makes f — 6 false. Since a conditional is true
except when its antecedent is true and its consequent false, 4 — 6 is
a tautology iff there is no valuation that makes ¢ true and 6 false.

Combining these two observations, we see that d — € is a tauto-
logy iff o £ 6. But there is a really, really important difference between
‘€’ and ‘—:

‘—’ is a sentential connective of TFL.
‘€’ is a symbol of augmented English.

Indeed, when ‘=’ is flanked with two TFL sentences, the result
is a longer TFL sentence. By contrast, when we use ‘F’, we form a
metalinguistic sentence that mentions the surrounding TFL sentences.
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Exercicios

A. Revisit your answers to §10A. Determine which sentences were tau-
tologies, which were contradictions, and which were neither tautologies
nor contradictions.

B. Use truth tables to determine whether these sentences are jointly
satisfiable, or jointly unsatisfiable:

1. A—> A, -A— —A, ANA, AV A
2. AVB,A—>C,B—C

3. BA(CV A),A— B,-(BVC)
4. A (Bv(C),C— -4, A— —-B

C. Use truth tables to determine whether each argument is valid or
invalid.

1. A—>A. . A

2. A—> (AN-A).. -4

3. AV(B—> A)..-4 —> -B

4. AVB,BVC,—-A..BANC

5 (BANA) - C(CANA) —>B..(CAB)— 4

D. Determine whether each sentence is a tautology, a contradiction, or
a contingent sentence, using a complete truth table.

-BAB

-DVD

(ANB)V (BAA)

—[4 — (B — 4)]

A< [A— (BA-B)]
[(AAB) & Bl —» (A — B)

ST @ b

E. Determine whether each the following sentences are logically equiva-
lent using complete truth tables. If the two sentences really are logically
equivalent, write “equivalent.” Otherwise write, “Not equivalent.”

A and -4

AN-Aand -B < B
[(AvB)vCland [AV (BV ()]
AV(BAC)and (AVB)A(AVC)
[AAN(AVB)] —>Band A— B

AN ol S
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F. Determine whether each the following sentences are logically equi-
valent using complete truth tables. If the two sentences really are equi-
valent, write “equivalent.” Otherwise write, “not equivalent.”

A—Aand A A

-(4 — B) and -4 — -B

AV Band -4 —> B
(A—-B)—»Cand 44— (B— (C)
5 Ao (Be C)and AAN(BAC)

Ll

G. Determine whether each collection of sentences is jointly satisfiable
or jointly unsatisfiable using a complete truth table.

AN-B,-(4A— B),B— A4

AV B, A— -A, B— —-B
~(-=4AVB),A—-C,A— (B— C(C)
A— B, AN-B

5 A—->B—-C),A4—-B)—-C,A-C

L

H. Determine whether each collection of sentences is jointly satisfiable
or jointly unsatisfiable, using a complete truth table.

1. "B,A— B, 4

2. (AVB), A< B,B— A

3. AV B, -B,-B — -4

4. A B,-BV-A,A— B

5 (AvB)vC,-Av-B,-CV -B

I. Determine whether each argument is valid or invalid, using a com-
plete truth table.

1. A—>B,B.. 4

2. Ao B,BC. . A< C
3. A-B,A—-C..B—>C
4. A>B,B—>A. . A< B

J. Determine whether each argument is valid or invalid, using a com-
plete truth table.

1. AV[A—> (Ao 4)] .. 4
2. AVB,BVC,-B..ANC
3. A— B,-4A.".-B
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4.
5.
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A’B —|(A—>—|B)
~(AAB),AVB, A B..C

K. Answer each of the questions below and justify your answer.

1.

Suppose that  and % are logically equivalent. What can you
say about of < %?

. Suppose that (d A %B) — 6 is neither a tautology nor a contra-

diction. What can you say about whether of, B .". 6 is valid?
Suppose that d, 9B and € are jointly unsatisfiable. What can you
say about (4 A B A 6)?

Suppose that o is a contradiction. What can you say about
whether o, B £ 67

Suppose that 6 is a tautology. What can you say about whether
A, B G?

Suppose that o and 9% are logically equivalent. What can you
say about (4 Vv B)?

Suppose that o and 9B are not logically equivalent. What can
you say about ( vV %)?

L. Consider the following principle:

¢ Suppose  and 9B are logically equivalent. Suppose an argument

contains o (either as a premise, or as the conclusion). The vali-
dity of the argument would be unaffected, if we replaced o with
%.

Is this principle correct? Explain your answer.
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Atalhos nas
tabelas de
verdade

With practice, you will quickly become adept at filling out truth tables.
In this section, we want to give you some permissible shortcuts to help

you along the way.

12.1  Working through truth tables

You will quickly find that you do not need to copy the truth value of
each sentence letter, but can simply refer back to them. So you can

speed things up by writing:

P Q| @vQ)o-P
T T T FF
T F T FF
F T T TT
F F F FT

You also know for sure that a disjunction is true whenever one of the
disjuncts is true. So if you find a true disjunct, there is no need to work
out the truth values of the other disjuncts. Thus you might offer:

79
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P Q| (=Pv-Q)V-P
T T|F FF FF
T F|F TT TF
F T TT
F F TT

Equally, you know for sure that a conjunction is false whenever one of
the conjuncts is false. So if you find a false conjunct, there is no need to
work out the truth value of the other conjunct. Thus you might offer:

P Q| -(PA-Q)A-P
T T FF
T F FF
F T|T F TT
F F|T F TT

A similar short cut is available for conditionals. You immediately know
that a conditional is true if either its consequent is true, or its antece-
dent is false. Thus you might present:

P 0 ‘ (P—>Q)—>P)—>P
T T T
T F T
F T T F T
F F T F T

So ‘(P — Q) — P) — P’ is a tautology. In fact, it is an instance of
Peirce’s Law, named after Charles Sanders Peirce.

12.2 Testing for validity and entailment

When we use truth tables to test for validity or entailment, we are chec-
king for bad lines: lines where the premises are all true and the conclu-
sion is false. Note:

¢ Any line where the conclusion is true is not a bad line.
y
* Any line where some premise is false is not a bad line.

Since all we are doing is looking for bad lines, we should bear this
in mind. So: if we find a line where the conclusion is true, we do not
need to evaluate anything else on that line: that line definitely isn’t bad.
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Likewise, if we find a line where some premise is false, we do not need
to evaluate anything else on that line.
With this in mind, consider how we might test the following for
validity:
AL —(JVL),-L..]J

The first thing we should do is evaluate the conclusion. If we find that
the conclusion is #rue on some line, then that is not a bad line. So we
can simply ignore the rest of the line. So at our first stage, we are left
with something like:

J L|-Lo(vLD | -L| ]
T T T
T F T
F T ? > | F
F F ? > | F

where the blanks indicate that we are not going to bother doing any
more investigation (since the line is not bad) and the question-marks
indicate that we need to keep investigating.

The easiest premise to evaluate is the second, so we next do that:

J L|-Lo(JVvL) | -L| ]
T T T
T F T
F T F | F
F F ? T |F

Note that we no longer need to consider the third line of the table: it
will not be a bad line, because (at least) one of premises is false on that
line. Finally, we complete the truth table:

‘ —|L—>(]VL) ‘ =L ‘

F
T F F | T

oo S~

L J
T T
F T
T F
F F

The truth table has no bad lines, so the argument is valid. (Any va-
luation on which all the premises are true is a valuation on which the
conclusion is true.)
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It might be worth illustrating the tactic again. Let us check whether
the following argument is valid

AV B,=(AAC),~(BA=-D)..(=CVD)

At the first stage, we determine the truth value of the conclusion. Since
this is a disjunction, it is true whenever either disjunct is true, so we
can speed things along a bit. We can then ignore every line apart from
the few lines where the conclusion is false.

A B C D|AVB | ~(AAC) | ~(BA=D) | (-CVD)
T T T T T
T T T F ? ? ? F F
T T F T T
T T F F T T
T F T T T
T F T F ? ? ? F F
T F F T T
T F F F T T
F T T T T
F T T F ? ? ? F F
F T F T T
F T F F T T
F F T T T
F F T F ? ? ? F F
F F F T T
F F F F T T

We must now evaluate the premises. We use shortcuts where we can:
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A B C D| AVB -(ANC) | =(BA=D) | (=CVD)
T T T T T
T T T F T F T F F
T T F T T
T T F F T T
T F T T T
T F T F T F T F F
T F F T T
T F F F T T
F T T T T
F T T F T T F F TT F F
F T F T T
F T F F T T
F F T T T
F F T F F F F
F F F T T
F F F F T T

If we had used no shortcuts, we would have had to write 256 “T’s or ‘F’s
on this table. Using shortcuts, we only had to write 37. We have saved
ourselves a lot of work.

We have been discussing shortcuts in testing for logically validity,
but exactly the same shortcuts can be used in testing for entailment. By
employing a similar notion of dad lines, you can save yourself a huge
amount of work.

Exercicios

A. Using shortcuts, determine whether each sentence is a tautology, a
contradiction, or neither.

-BAB

-DVvD
(AAB)V(BAA)

-[4 — (B — A)]

A< [A— (BA-B)]
-(AAB) - A4

A— (BVC(C)

(AN=A4)— (BVC)
(BAD) e [Ae (AV O)]

© PN o ® P K
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Sometimes, we do not need to know what happens on every line of a
truth table. Sometimes, just a line or two will do.

Tautology. In order to show that a sentence is a tautology, we need
to show that it is true on every valuation. That is to say, we need to
know that it comes out true on every line of the truth table. So we need
a complete truth table.

To show that a sentence is not a tautology, however, we only need
one line: a line on which the sentence is false. Therefore, in order
to show that some sentence is not a tautology, it is enough to provide
a single valuation—a single line of the truth table—which makes the
sentence false.

Suppose that we want to show that the sentence (UAT) — (SAWY)
is not a tautology. We set up a PARTIAL TRUTH TABLE:

S T U W |UAT)>(SAW)
| F

84
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We have only left space for one line, rather than 16, since we are only
looking for one line on which the sentence is false. For just that reason,
we have filled in ‘F’ for the entire sentence.

The main logical operator of the sentence is a conditional. In order
for the conditional to be false, the antecedent must be true and the
consequent must be false. So we fill these in on the table:

S T U W |UAT)>(SAW)
| T F F

In order for the ‘(U A T')’ to be true, both ‘U’ and ‘T’ must be true.

S

T U W |UAT)>S(SAW)

T T | TTTF F

Now we just need to make ‘(S A W)’ false. To do this, we need to make
at least one of ‘S” and ‘W’ false. We can make both ‘S’ and ‘W’ false if
we want. All that matters is that the whole sentence turns out false on
this line. Making an arbitrary decision, we finish the table in this way:

S T U W |UAT)>(SAW)
F T T F ‘ TTTFFFF
We now have a partial truth table, which shows that (UAT) — (SAWY
is not a tautology. Put otherwise, we have shown that there is a valuation
which makes ‘(U A T) — (§ A W)’ false, namely, the valuation which

makes ‘S’ false, ‘T’ true, ‘U’ true and ‘W’ false.

Contradiction. Showing that something is a contradiction requires
a complete truth table: we need to show that there is no valuation which
makes the sentence true; that is, we need to show that the sentence is
false on every line of the truth table.

However, to show that something is not a contradiction, all we need
to do is find a valuation which makes the sentence true, and a single
line of a truth table will suffice. We can illustrate this with the same
example.

S T U W | UAT)>(SAW)
| T
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To make the sentence true, it will suffice to ensure that the antecedent
is false. Since the antecedent is a conjunction, we can just make one of
them false. For no particular reason, we choose to make ‘U’ false; and
then we can assign whatever truth value we like to the other sentence
letters.

S U W | UAD)>(SAW)
F F F

T
T | FFTTFFF

Equivalence. To show that two sentences are equivalent, we must
show that the sentences have the same truth value on every valuation.
So this requires a complete truth table.

To show that two sentences are not equivalent, we only need to
show that there is a valuation on which they have different truth values.
So this requires only a one-line partial truth table: make the table so
that one sentence is true and the other false.

Consistency. To show that some sentences are jointly satisfiable,
we must show that there is a valuation which makes all of the sentences
true,so this requires only a partial truth table with a single line.

To show that some sentences are jointly unsatisfiable, we must show
that there is no valuation which makes all of the sentence true. So this
requires a complete truth table: You must show that on every row of
the table at least one of the sentences is false.

Validity. To show that an argument is valid, we must show that there
is no valuation which makes all of the premises true and the conclusion
false. So this requires a complete truth table. (Likewise for entailment.)

To show that argument is invalid, we must show that there is a
valuation which makes all of the premises true and the conclusion false.
So this requires only a one-line partial truth table on which all of the
premises are true and the conclusion is false. (Likewise for a failure of
entailment.)

This table summarises what is required:
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Yes No
tautology? complete one-line partial
contradiction? complete one-line partial
equivalent? complete one-line partial
satisfiable? one-line partial complete
valid? complete one-line partial
entailment? complete one-line partial

Exercicios

87

A. Use complete or partial truth tables (as appropriate) to determine

whether these pairs of sentences are logically equivalent:

A, -A

A, AV A
A— A, A A

AV -B,A— B
AAN-A,-B < B
-(AAB),~AV -B
-(4 — B), -4 — -B
(4> B), (=B — —4)

PN o ® b

B. Use complete or partial truth tables (as appropriate) to determine
whether these sentences are jointly satisfiable, or jointly unsatisfiable:

AANB,C — -B, C

A— B,B—C, A4, -C
AVB,Bv(C,C— -4

A, B, C,-D,-E, F
ANBVC),~(ANC), ~(BAC)
A— B,B— C,—-(4— C)

ISE Al ol o S

C. Use complete or partial truth tables (as appropriate) to determine

whether each argument is valid or invalid:

AV][A—> (Ao ). .4
Ao ~(BeoA). . A
A—>BB.. A
AVB,BVC-B..ANC
Ao BB—C..A-C

i oM
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D. Determine whether each sentence is a tautology, a contradiction, or
a contingent sentence. Justify your answer with a complete or partial
truth table where appropriate.

1.

=
e

© O ood s

A— -4

A— (AN(AV B))

(4— B) & (B— 4)

A— =(AA(AV B))

-B — [(wAAA)V B]

-(4V B) & (=A A =B)
[(AAB)AC]— B
=[(C v 4) v B|
[(AAB)A~(AAB)|AC
(AANB)] = [(AAC)V (B A D)

E. Determine whether each sentence is a tautology, a contradiction, or
a contingent sentence. Justify your answer with a complete or partial
truth table where appropriate.

pt
e

© O oc s b K

-(4V 4)

(4A—> B)vV(B— A)
[(A—-B)—> 4] > A
=-[(4 - B) vV (B — A)]
(ANB)V(AV B)
-(AAB) & A

A— (BVv Q)
(AAn-4)— (BV ()
(BAD)eo [Ao (AV O)]
=[(4 — B) Vv (C — D)]

F. Determine whether each the following pairs of sentences are logically
equivalent using complete truth tables. If the two sentences really are
logically equivalent, write “equivalent.” Otherwise write, “not equiva-

lent.”

1. Aand AV A
2. Aand AN A
3. Av-Band 4 — B

4.

(4 - B) and (=B — —A)
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-(A A B) and =4V =B
((U->XVvX)vU)and «(X A(X AU))
((CA(N < C)) & C)and (-——=N — ()
[(AVB)AC]and [AV (B A C)]
(LAC)AI)and LV C

G. Determine whether each collection of sentences is jointly satisfiable
or jointly unsatisfiable. Justify your answer with a complete or partial
truth table where appropriate.

©

10.

A A o o

A— A, -A— —-A ANA, AV A
A—-A4,-4— A
AVB,A—>C,B—>C

AVB, A—C,B— (C,-C
BA(CVA),A— B,~(BVC(C)

(A B)—> B,B— =(A< B), AVB
A BvV(C),C— -4, A— —-B
Ao B,-BVvV-4,A— B

Ao B, A— C,B— D,~(CV D)
-(4A-B), B— -4, -B

H. Determine whether each argument is valid or invalid. Justify your
answer with a complete or partial truth table where appropriate.

"
CL O otk @ b =

A—(AN-A).. =4
AVB,A—>B,B—>A.". A< B

AV(B— A)..-A— -B
AVB,A—-B,B—>A.".A\NB

(BAA) > C,(CAA) —>B..(CAB)— 4
—~(=4AV-B),A—>-C..A— (B—- ()

AANB — C),~-CA(=B—=4)..CA-C
AANB,-A—-C,B—-D..AVB

A— B..(AANB)V (=AA-B)

-A—> B~-B—>C,~C—>A.".-4A— (-BVv-0)

I. Determine whether each argument is valid or invalid. Justify your
answer with a complete or partial truth table where appropriate.

Al oo S

Ao ~(Beo A). . A

AVB,BV(C,-A..BAC
A—-C,E—-(DVB),B—-D..(AvC)V(B— (EAD))
AVB,C -A4,C>B..A— (B— ()
A—>B,-BVA. . A< B
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Way back in §2, we said that an argument is valid iff there is no case in
which all of the premises are true and the conclusion is false.

In the case of TFL, this led us to develop truth tables. Each line of
a complete truth table corresponds to a valuation. So, when faced with
a TFL argument, we have a very direct way to assess whether there is
a valuation on which the premises are true and the conclusion is false:
just thrash through the truth table.

However, truth tables do not necessarily give us much insight. Con-
sider two arguments in TFL:

PvQ,-P..Q
P—-0QP..0

Clearly, these are valid arguments. You can confirm that they are valid
by constructing fourline truth tables, but we might say that they make
use of different forms of reasoning. It might be nice to keep track of
these different forms of inference.

One aim of a natural deduction system is to show that particular ar-
guments are valid, in a way that allows us to understand the reasoning

91
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that the arguments might involve. We begin with very basic rules of
inference. These rules can be combined to offer more complicated ar-
guments. Indeed, with just a small starter pack of rules of inference,
we hope to capture all valid arguments.

This is a very different way of thinking about arguments.

With truth tables, we directly consider different ways to make sen-
tences true or false. With natural deduction systems, we manipulate
sentences in accordance with rules that we have set down as good rules.
The latter promises to give us a better insight—or at least, a different
insight—into how arguments work.

The move to natural deduction might be motivated by more than
the search for insight. It might also be motivated by necessity. Consider:

A1 — 1 (A1 A Ay N A3 AA4AA5)—)(01VCQV03VC4VC5)

To test this argument for validity, you might use a 1024-line truth table.
If you do it correctly, then you will see that there is no line on which
all the premises are true and on which the conclusion is false. So you
will know that the argument is valid. (But, as just mentioned, there is a
sense in which you will not know why the argument is valid.) But now
consider:

A1 — Cy .. (A1 AN Ag AN Az AN Ay A As A Ag A A7 A Ag A Ag A Ayp) —
(01VCQV03VC4VC5VC(;VC7V08VCQVC10)

This argument is also valid—as you can probably tell—but to test it
requires a truth table with 220 = 1048576 lines. In principle, we can
set a machine to grind through truth tables and report back when it
is finished. In practice, complicated arguments in TFL can become
intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chapter 21),
though, the problem gets dramatically worse. There is nothing like
the truth table test for FOL. To assess whether or not an argument
is valid, we have to reason about all interpretations, but, as we will
see, there are infinitely many possible interpretations. We cannot even
in principle set a machine to grind through infinitely many possible
interpretations and report back when it is finished: it will never finish.
We either need to come up with some more efficient way of reasoning
about all interpretations, or we need to look for something different.

There are, indeed, systems that codify ways to reason about all
possible interpretations. They were developed in the 1950s by Evert



93

Beth and Jaakko Hintikka, but we will not follow this path. We will,
instead, look to natural deduction.

Rather than reasoning directly about all valuations (in the case of
TFL), we will try to select a few basic rules of inference. Some of
these will govern the behaviour of the sentential connectives. Others
will govern the behaviour of the quantifiers and identity that are the
hallmarks of FOL. The resulting system of rules will give us a new way
to think about the validity of arguments. The modern development
of natural deduction dates from simultaneous and unrelated papers by
Gerhard Gentzen and Stanislaw Jaskowski (1934). However, the natural
deduction system that we will consider is based largely around work by
Frederic Fitch (first published in 1952).
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We will develop a NATURAL DEDUCTION system. For each connective,
there will be INTRODUCTION rules, that allow us to prove a sentence
that has that connective as the main logical operator, and ELIMINATION
rules, that allow us to prove something given a sentence that has that
connective as the main logical operator.

15.1 The idea of a formal proof

A formal proof is a sequence of sentences, some of which are marked
as being initial assumptions (or premises). The last line of the formal
proof is the conclusion. (Henceforth, we will simply call these ‘proofs’,
but you should be aware that there are informal proofs too.)

As an illustration, consider:

-(AvB)..-AAN-B

We will start a proof by writing the premise:

1| =4V B)

94
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Note that we have numbered the premise, since we will want to refer
back to it. Indeed, every line on of proof is numbered, so that we can
refer back to it.

Note also that we have drawn a line underneath the premise.
Everything written above the line is an assumption. Everything written
below the line will either be something which follows from the assump-
tions, or it will be some new assumption. We are hoping to conclude
‘=4 A —B’; so we are hoping ultimately to conclude our proof with

n | “AN-B

for some number z. It doesn’t matter what line number we end on, but
we would obviously prefer a short proof to a long one.
Similarly, suppose we wanted to consider:

AV B,~(AANC),~(BA-D)..-CVD

The argument has three premises, so we start by writing them all down,
numbered, and drawing a line under them:

and we are hoping to conclude with some line:
n | -~CvVvD

All that remains to do is to explain each of the rules that we can use
along the way from premises to conclusion. The rules are broken down
by our logical connectives.

15.2 Reiteration

The very first rule is so breathtakingly obvious that it is surprising we
bother with it at all.

If you already have shown something in the course of a proof, the
reiteration rule allows you to repeat it on a new line. For example:
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4 |AANB

10 | AANB R4

This indicates that we have written ‘A A B’ on line 4. Now, at some later
line—line 10, for example—we have decided that we want to repeat this.
So we write it down again. We also add a citation which justifies what
we have written. In this case, we write ‘R’, to indicate that we are using
the reiteration rule, and we write ‘4’, to indicate that we have applied
it to line 4.

Here is a general expression of the rule:

m | A
Ad Rm

The point is that, if any sentence 9/ occurs on some line, then we can
repeat o on later lines. Each line of our proof must be justified by
some rule, and here we have ‘R m’. This means: Reiteration, applied
to line m.

Two things need emphasizing. First ‘g’ is not a sentence of TFL.
Rather, it a symbol in the metalanguage, which we use when we want
to talk about any sentence of TFL (see §7). Second, and similarly, ‘m’
is not a symbol that will appear on a proof. Rather, it is a symbol in
the metalanguage, which we use when we want to talk about any line
number of a proof. In an actual proof, the lines are numbered ‘1’, 2°,
‘3’, and so forth. But when we define the rule, we use variables like ‘m’
to underscore the point that the rule may be applied at any point.

15.3 Conjunction

Suppose we want to show that Ludwig is both reactionary and liberta-
rian. One obvious way to do this would be as follows: first we show that
Ludwig is reactionary; then we show that Ludwig is libertarian; then
we put these two demonstrations together, to obtain the conjunction.

Our natural deduction system will capture this thought straight-
forwardly. In the example given, we might adopt the following symbo-
lization key:

R: Ludwig is reactionary
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L: Ludwig is libertarian

Perhaps we are working through a proof, and we have obtained ‘R’ on
line 8 and ‘L’ on line 15. Then on any subsequent line we can obtain
‘R A L’ thus:

8 | R
15 | L
RAL ALS8 15

Note that every line of our proof must either be an assumption, or must
be justified by some rule. We cite ‘AI 8, 15’ here to indicate that the
line is obtained by the rule of conjunction introduction (AI) applied to
lines 8 and 15. We could equally well obtain:

8 |R
15 | L
LAR AL15,8

with the citation reversed, to reflect the order of the conjuncts. More
generally, here is our conjunction introduction rule:

m | A
n | B
ANB  ANlm,n

To be clear, the statement of the rule is schematic. It is not itself a
proof. ‘sf” and ‘%’ are not sentences of TFL. Rather, they are symbols
in the metalanguage, which we use when we want to talk about any
sentence of TFL (see §7). Similarly, ‘m’ and ‘a2’ are not a numerals that
will appear on any actual proof. Rather, they are symbols in the meta-
language, which we use when we want to talk about any line number of
any proof. In an actual proof, the lines are numbered ‘1’, ‘2’, ‘3’, and
so forth, but when we define the rule, we use variables to emphasize
that the rule may be applied at any point. The rule requires only that
we have both conjuncts available to us somewhere in the proof. They
can be separated from one another, and they can appear in any order.
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The rule is called ‘conjunction introduction’ because it introduces
the symbol ‘A’ into our proof where it may have been absent. Corres-
pondingly, we have a rule that eliminates that symbol. Suppose you have
shown that Ludwig is both reactionary and libertarian. You are enti-
tled to conclude that Ludwig is reactionary. Equally, you are entitled
to conclude that Ludwig is libertarian. Putting this together, we obtain
our conjunction elimination rule(s):

m | ANDRB

A AE m

and equally:

m | ANDRB

7] AE m

The point is simply that, when you have a conjunction on some line
of a proof, you can obtain either of the conjuncts by AE. One point is
worth emphasising: you can only apply this rule when conjunction is
the main logical operator. So you cannot infer ‘D’ just from ‘CV(DAE)!

Even with just these two rules, we can start to see some of the power
of our formal proof system. Consider:

[(AVB)—- (CVD)IA(EVF)—(GV H)]
S [(EVE)—>(GVH)|A[(AV B)— (CV D)

The main logical operator in both the premise and conclusion of this
argument is ‘A’. In order to provide a proof, we begin by writing
down the premise, which is our assumption. We draw a line below
this: everything after this line must follow from our assumptions by (re-
peated applications of) our rules of inference. So the beginning of the
proof looks like this:

1 | [(AVB) = (CVD)]A(EVF)— (GVH)]

From the premise, we can get each of the conjuncts by AE. The proof
now looks like this:
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1 | [(AVB) - (CVD)A[(EVF)— (GVH)
2 | [(A4V B)— (CV D)] AE 1
3 |[(EVF)— (GV H) AE 1

So by applying the Al rule to lines 3 and 2 (in that order), we arrive at
the desired conclusion. The finished proof looks like this:

1 |([AvB)-> (CVD)IA(EVEF)—(GV H)]

2 | [(A4V B)— (CV D)] AE 1
3|[(EVF)— (GV H)] AE 1
4|

(EVF)—> (GVH)A[(AVB)—> (CVvD)] Al32

This is a very simple proof, but it shows how we can chain rules of
proof together into longer proofs. In passing, note that investigating
this argument with a truth table would have required 256 lines; our
formal proof required only four lines.

It is worth giving another example. Back in §10.3, we noted that
this argument is valid:

ANBAC). .(ANB)AC
To provide a proof corresponding to this argument, we start by writing:

1 | AABAC)

From the premise, we can get each of the conjuncts by applying AE
twice. We can then apply AE twice more, so our proof looks like:

1| AAN(BAC)

2 |4 AE 1
3 | BAC AE 1
4 | B AE 3
5|C AE 3

But now we can merrily reintroduce conjunctions in the order we wan-
ted them, so that our final proof is:
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AN(BAC)
A

BAC

B

C

ANB

I~ S N O CU R - R

(AANB)AC

CAPITULO 15. AS REGRAS BASICAS DA LVF

AE 1
AE 1
AE 3
AE 3
AL 2, 4
AL 6, 5

Recall that our official definition of sentences in TFL only allowed con-
junctions with two conjuncts. The proof just given suggests that we
could drop inner brackets in all of our proofs. However, this is not
standard, and we will not do this. Instead, we will maintain our more
austere bracketing conventions. (Though we will still allow ourselves
to drop outermost brackets, for legibility.)

Let’s give one final illustration. When using the Al rule, there is no
requirement to apply it to different sentences. So, if we want, we can
formally prove ‘4 A A’ from ‘A’ thus:

1|4
2 1Ard Al 1

Simple, but effective.

15.4 Conditional

Consider the following argument:

If Jane is smart then she is fast.

Jane is smart.
.". Jane is fast.

This argument is certainly valid, and it suggests a straightforward con-
ditional elimination rule (—E):
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m | Ad—>R
n | oA
B —E m, n

This rule is also sometimes called modus ponens. Again, this is an
elimination rule, because it allows us to obtain a sentence that may
not contain ‘—’, having started with a sentence that did contain ‘—’.
Note that the conditional § — 9 and the antecedent & can be separa-
ted from one another in the proof, and they can appear in any order.
However, in the citation for —E, we always cite the conditional first,
followed by the antecedent.

The rule for conditional introduction is also quite easy to motivate.
The following argument should be valid:

Ludwig is reactionary. Therefore if Ludwig is libertarian,
then Ludwig is both reactionary and libertarian.

If someone doubted that this was valid, we might try to convince them
otherwise by explaining ourselves as follows:

Assume that Ludwig is reactionary. Now, additionally as-
sume that Ludwig is libertarian. Then by conjunction
introduction—which we just discussed—Ludwig is both re-
actionary and libertarian. Of course, that’s conditional on
the assumption that Ludwig is libertarian. But this just
means that, if Ludwig is libertarian, then he is both reac-
tionary and libertarian.

Transferred into natural deduction format, here is the pattern of re-
asoning that we just used. We started with one premise, ‘Ludwig is
reactionary’, thus:

1|R
The next thing we did is to make an additional assumption (‘Ludwig
is libertarian’), for the sake of argument. To indicate that we are no

longer dealing merely with our original assumption (‘R’), but with some
additional assumption, we continue our proof as follows:
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[T

Note that we are not claiming, on line 2, to have proved ‘L’ from line 1,
so we do not write in any justification for the additional assumption on
line 2. We do, however, need to mark that it is an additional assump-
tion. We do this by drawing a line under it (to indicate that it is an
assumption) and by indenting it with a further vertical line (to indicate
that it is additional).

With this extra assumption in place, we are in a position to use AL
So we can continue our proof:

1|R
2 L
3 RAL AL1,2

So we have now shown that, on the additional assumption, ‘L’, we can
obtain ‘R A L’. We can therefore conclude that, if ‘L’ obtains, then so
does ‘R A L’. Or, to put it more briefly, we can conclude ‘L — (R A L)

1R

2 _L

3 RAL ALl 2
4 |L>(RAL) —I2-3

Observe that we have dropped back to using one vertical line on the left.
We have discharged the additional assumption, ‘L’, since the conditional
itself follows just from our original assumption, ‘R’.

The general pattern at work here is the following. We first make
an additional assumption, ¢/; and from that additional assumption, we
prove 9. In that case, we know the following: If o is true, then 9 is
true. This is wrapped up in the rule for conditional introduction:
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i o/}
J B

d—-RB —li-j

There can be as many or as few lines as you like between lines i
and j.

It will help to offer a second illustration of —I in action. Suppose
we want to consider the following:

P—-00—-R...P—>R

We start by listing both of our premises. Then, since we want to ar-
rive at a conditional (namely, ‘P — R’), we additionally assume the
antecedent to that conditional. Thus our main proof starts:

1|P—>0Q
2|10—R

12

Note that we have made ‘P’ available, by treating it as an additional
assumption, but now, we can use —E on the first premise. This will
yield ‘Q’. We can then use —E on the second premise. So, by assuming
‘P’ we were able to prove ‘R’, so we apply the —I rule—discharging
‘P’—and finish the proof. Putting all this together, we have:

1({P—-0

2 |0—R

3 p

4 0 —-E1,3
5 R —E 24
6 |P—>R —-I35
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15.5 Additional assumptions and subproofs

The rule —I invoked the idea of making additional assumptions. These
need to be handled with some care.
Consider this proof:

A

B
B R2

B— B —I2-3

B oW N

This is perfectly in keeping with the rules we have laid down already,
and it should not seem particularly strange. Since ‘B — B’ is a tauto-
logy, no particular premises should be required to prove it.

But suppose we now tried to continue the proof as follows:

A

B
B R2

[ R R

B—>B —I2-3
B naughty attempt

to invoke —E 4, 3

If we were allowed to do this, it would be a disaster. It would allow us
to prove any sentence letter from any other sentence letter. However, if
you tell me that Anne is fast (symbolized by ‘4’), we shouldn’t be able to
conclude that Queen Boudica stood twenty-feet tall (symbolized by ‘B’)!
We must be prohibited from doing this, but how are we to implement
the prohibition?

We can describe the process of making an additional assumption as
one of performing a subproof: a subsidiary proof within the main proof.
When we start a subproof, we draw another vertical line to indicate that
we are no longer in the main proof. Then we write in the assumption
upon which the subproof will be based. A subproof can be thought of
as essentially posing this question: what could we show, if we also make
this additional assumption?
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When we are working within the subproof, we can refer to the ad-
ditional assumption that we made in introducing the subproof, and to
anything that we obtained from our original assumptions. (After all,
those original assumptions are still in effect.) At some point though,
we will want to stop working with the additional assumption: we will
want to return from the subproof to the main proof. To indicate that
we have returned to the main proof, the vertical line for the subproof
comes to an end. At this point, we say that the subproof is CLOSED.
Having closed a subproof, we have set aside the additional assumption,
so it will be illegitimate to draw upon anything that depends upon that
additional assumption. Thus we stipulate:

To cite an individual line when applying a rule:

1. the line must come before the line where the rule is ap-
plied, but

2. not occur within a subproof that has been closed before
the line where the rule is applied.

This stipulation rules out the disastrous attempted proof above.
The rule of —E requires that we cite two individual lines from earlier
in the proof. In the purported proof, above, one of these lines (namely,
line 4) occurs within a subproof that has (by line 5) been closed. This
is illegitimate.

Closing a subproof is called DISCHARGING the assumptions of that
subproof. So we can put the point this way: you cannot refer back to
anything that was obtained using discharged assumptions.

Subproofs, then, allow us to think about what we could show, if we
made additional assumptions. The point to take away from this is not
surprising—in the course of a proof, we have to keep very careful track
of what assumptions we are making, at any given moment. Our proof
system does this very graphically. (Indeed, that’s precisely why we have
chosen to use this proof system.)

Once we have started thinking about what we can show by making
additional assumptions, nothing stops us from posing the question of
what we could show if we were to make even more assumptions. This
might motivate us to introduce a subproof within a subproof. Here is
an example which only uses the rules of proof that we have considered
so far:
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1|4

2 _B

3 _C

4 ’Z\ B AL L, 2
5 C > (AAB) —13-4
6 |B—>(C—-(AAB) —I12-5

Notice that the citation on line 4 refers back to the initial assumption
(on line 1) and an assumption of a subproof (on line 2). This is perfectly
in order, since neither assumption has been discharged at the time (i.e.,
by line 4).

Again, though, we need to keep careful track of what we are assu-
ming at any given moment. Suppose we tried to continue the proof as
follows:

1|4

2 _B

3 _C

4 ’Z\ B A1, 2

5 C - (AAB) —13-4

6 |B—>(C—>(AAB) —-I12-5

7| C—(AAB) naughty attempt

to invoke —I 3—-4

This would be awful. If we tell you that Anne is smart, you should
not be able to infer that, if Cath is smart (symbolized by ‘C’) then both
Anne is smart and Queen Boudica stood 2o-feet tall! But this is just
what such a proof would suggest, if it were permissible.

The essential problem is that the subproof that began with the as-
sumption ‘C’ depended crucially on the fact that we had assumed ‘B’
on line 2. By line 6, we have discharged the assumption ‘B’: we have
stopped asking ourselves what we could show, if we also assumed ‘B’.
So it is simply cheating, to try to help ourselves (on line 7) to the sub-
proof that began with the assumption ‘C’. Thus we stipulate, much as
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before, that a subproof can only be cited on a line if it does not occur
within some other subproof which is already closed at that line. The
attempted disastrous proof violates this stipulation. The subproof of
lines 3—4 occurs within a subproof that ends on line 5. So it cannot be
invoked on line 7.

Here is one further case we have to exclude:

1|4

2 _B

3 _C

4 BAC AL2,3

5 Cc AE 4

6 | B—>C naughty attempt
to invoke —I 2-5

Here we are trying to cite a subproof that begins on line 2 and ends on
line 5—but the sentence on line 5 depends not only on the assumption
on line 2, but also on one another assumption (line 3) which we have
not discharged at the end of the subproof. The subproof started on
line 3 is still open at line 3. But —I requires that the last line of the
subproof only relies on the assumption of the subproof being cited, i.e.,
the subproof beginning on line 2 (and anything before it), and not on
assumptions of any subproofs within it. In particular, the last line of
the subproof cited must not itself lie within a nested subproof.

To cite a subproof when applying a rule:

1. the cited subproof must come entirely before the applica-
tion of the rule where it is cited,

2. the cited subproof must not lie within some other closed
subproof which is closed at the line it is cited, and

3. its last line of the cited subproof must not occur inside a
nested subproof.

One last point to emphasize how rules can be applied: where a
rule requires you to cite an individual line, you cannot cite a subproof
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instead; and where it requires you to cite a subproof, you cannot cite
an individual line instead. So for instance, this is incorrect:

14

2 _B

3 _C

4 BAC AL2,3

5 Cc AE 4

6 c naughty attempt
to invoke R 3-5

7|1B—-C —12-6

Here, we have tried to justify C on line 6 by the reiteration rule, but we
have cited the subproof on lines 3-5 with it. That subproof is closed
and can in principle be cited on line 6. (For instance, we could use it
to justify C — C by —I1.) But the reiteration rule R requires you to cite
an individual line, so citing the entire subproof is inadmissible (even if
that subproof contains the sentence C we want to reiterate).

It is always permissible to open a subproof with any assumption.
However, there is some strategy involved in picking a useful assump-
tion. Starting a subproof with an arbitrary, wacky assumption would
just waste lines of the proof. In order to obtain a conditional by —I,
for instance, you must assume the antecedent of the conditional in a
subproof.

Equally, it is always permissible to close a subproof (and discharge
its assumptions). However, it will not be helpful to do so until you have
reached something useful. Once the subproof is closed, you can only
cite the entire subproof in any justification. Those rules that call for a
subproof or subproofs, in turn, require that the last line of the subproof
is a sentence of some form or other. For instance, you are only allowed
to cite a subproof for —I if the line you are justifying is of the form
d — B, d is the assumption of your subproof, and 9 is the last line
of your subproof.
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15.6 Biconditional

The rules for the biconditional will be like double-barrelled versions of
the rules for the conditional.

In order to prove ‘W « X, for instance, you must be able to prove
‘X’ on the assumption ‘W’ and prove ‘W’ on the assumption ‘X’. The
biconditional introduction rule («<I) therefore requires two subproofs.
Schematically, the rule works like this:

i o]
il e
k R
anr
deo B oli-j, k-

There can be as many lines as you like between i and j, and as
many lines as you like between £ and /. Moreover, the subproofs can
come in any order, and the second subproof does not need to come
immediately after the first.

The biconditional elimination rule («<E) lets you do a bit more
than the conditional rule. If you have the left-hand subsentence of the
biconditional, you can obtain the right-hand subsentence. If you have
the right-hand subsentence, you can obtain the left-hand subsentence.
So we allow:

m | Ao B
n | A
B —E m, n

and equally:
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m | AR
n | B
o/} —Em, n

Note that the biconditional, and the right or left half, can be sepa-
rated from one another, and they can appear in any order. However,
in the citation for <E, we always cite the biconditional first.

15.7 Disjunction

Suppose Ludwig is reactionary. Then Ludwig is either reactionary or
libertarian. After all, to say that Ludwig is either reactionary or liberta-
rian is to say something weaker than to say that Ludwig is reactionary.

Let’s emphasize this point. Suppose Ludwig is reactionary. It fol-
lows that Ludwig is either reactionary or a kumquat. Equally, it follows
that either Ludwig is reactionary or that kumquats are the only fruit.
Equally, it follows that either Ludwig is reactionary or that God is dead.
Many of these are strange inferences to draw, but there is nothing logi-
cally wrong with them (even if they maybe violate all sorts of implicit
conversational norms).

Armed with all this, we present the disjunction introduction rule(s):

m | A

AVAB Vim
and
m | A

Bvd Vim

Notice that 9B can be any sentence whatsoever, so the following is
a perfectly acceptable proof:
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1| M
2 | MV([(Ae B)—» (CAD)] e« [EAF]) VI

Using a truth table to show this would have taken 128 lines.

The disjunction elimination rule is, though, slightly trickier. Sup-
pose that either Ludwig is reactionary or he is libertarian. What can
you conclude? Not that Ludwig is reactionary; it might be that he is li-
bertarian instead. Equally, not that Ludwig is libertarian; for he might
merely be reactionary. Disjunctions, just by themselves, are hard to
work with.

But suppose that we could somehow show both of the following:
first, that Ludwig’s being reactionary entails that he is an Austrian eco-
nomist: second, that Ludwig’s being libertarian entails that he is an
Austrian economist. Then if we know that Ludwig is either reactionary
or libertarian, then we know that, whichever he is, Ludwig is an Aus-
trian economist. This insight can be expressed in the following rule,
which is our disjunction elimination (VE) rule:

m | AVRB
i o
ille
k B
L e
6 VE m, i—j, k-1

This is obviously a bit clunkier to write down than our previous
rules, but the point is fairly simple. Suppose we have some disjunction,
s v 3. Suppose we have two subproofs, showing us that € follows from
the assumption that ¢, and that ‘6 follows from the assumption that 9.
Then we can infer € itself. As usual, there can be as many lines as
you like between i and j, and as many lines as you like between £ and
[. Moreover, the subproofs and the disjunction can come in any order,
and do not have to be adjacent.

Some examples might help illustrate this. Consider this argument:

(PAQ)V(PAR)..P
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An example proof might run thus:

1 [{(PAQ)V(PAR)

21 |PAQ

3 P AE 2

4 PAR

5 P AE 4

6| P VE 1, 2-3, 4-5

Here is a slightly harder example. Consider:
ANBVC). . (AANB)V(AAC)

Here is a proof corresponding to this argument:

1 AN(BVC(C)

2 A AE 1

3 |BvC AE 1

4 B

5 AAB AL 2, 4

6 (AAB)v((AAnC) VIS5

7 C

8 Z\C AL 2,7

9 (AAB)v((AnC) VIS8

10 | (AAB)V(AAC) VE 3, 4-6, 7-9

Don’t be alarmed if you think that you wouldn’t have been able to come
up with this proof yourself. The ability to come up with novel proofs
comes with practice, and we’ll cover some strategies for finding proofs
in §16. The key question at this stage is whether, looking at the proof,
you can see that it conforms to the rules that we have laid down. That
just involves checking every line, and making sure that it is justified in
accordance with the rules we have laid down.
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15.8 Contradiction and negation

We have only one connective left to deal with: negation. But to tackle
it, we must connect negation with contradiction.

An effective form of argument is to argue your opponent into con-
tradicting themselves. At that point, you have them on the ropes. They
have to give up at least one of their assumptions. We are going to make
use of this idea in our proof system, by adding a new symbol, ‘L’, to
our proofs. This should be read as something like ‘contradiction!” or
‘reductio!’ or ‘but that’s absurd!” The rule for introducing this symbol
is that we can use it whenever we explicitly contradict ourselves, i.e.,
whenever we find both a sentence and its negation appearing in our
proof:

-Em, n

It does not matter what order the sentence and its negation appear
in, and they do not need to appear on adjacent lines. However, we
always cite the line number of the negation first, followed by that of the
sentence it is a negation of.

There is obviously a tight link between contradiction and negation.
The rule —E lets us proceed from two contradictory sentences—gl and
its negation —gl—to an explicit contradition L. We choose the label
for a reason: it is the the most basic rule that lets us proceed from a
premise containing a negation, i.e., =4, to a sentence not containing
it, i.e., L. So it is a rule that eliminates —.

We have said that ‘1L’ should be read as something like ‘contra-
diction!” but this does not tell us much about the symbol. There are,
roughly, three ways to approach the symbol.

* We might regard ‘L’ as a new atomic sentence of TFL, but one
which can only ever have the truth value False.

* We might regard ‘L’ as an abbreviation for some canonical con-
tradiction, such as ‘4 A =A4’. This will have the same effect as the
above—obviously, ‘4 A =4’ only ever has the truth value False—
but it means that, officially, we do not need to add a new symbol
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to TFL.

¢ We might regard ‘L’, not as a symbol of TFL, but as something
more like a punctuation mark that appears in our proofs. (It is on
a par with the line numbers and the vertical lines, say.)

There is something very philosophically attractive about the third op-
tion, but here we will officially adopt the first. ‘L’ is to be read as a
sentence letter that is always false. This means that we can manipulate
it, in our proofs, just like any other sentence.

We still have to state a rule for negation introduction. The rule is
very simple: if assuming something leads you to a contradiction, then
the assumption must be wrong. This thought motivates the following
rule:

i A
J 1
- =1 i—j

There can be as many lines between i and j as you like. To see this
in practice, and interacting with negation, consider this proof:

1|D

9| | -p

3|11 -Eo1
4 |--D 123

If the assumption that o is true leads to a contradiction, 9 cannot
be true, i.e., it must be false, i.e., =gd must be true. Of course, if the
assumption that d is false (i.e., the assumption that —d is true) leads
to a contradiction, then o cannot be false, i.e., 9f must be true. So we
can consider the following rule:
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i -9
J 1

o IP i—j

This rule is called indirect proof, since it allows us to prove o indi-
rectly, by assuming its negation. Formally, the rule is very similar to —I,
but # and —g have changed places. Since —d is not the conclusion of
the rule, we are not introducing -, so IP is not a rule that introduces
any connective. It also doesn’t eliminate a connective, since it has no
free-standing premises which contain —, only a subproof with an as-
sumption of the form —dl. By contrast, =E does have a premise of the
form —dl: that’s why —E eliminates -, but IP does not."

Using —I, we were able to give a proof of -—% from . Using IP,
we can go the other direction (with essentially the same proof).

1 |--D

2 -D

3 L -E 1, 2
4 | D 1P 2-3

We need one last rule. It is a kind of elimination rule for ‘1’, and
known as explosion.® If we obtain a contradiction, symbolized by ‘L1’,
then we can infer whatever we like. How can this be motivated, as a rule
of argumentation? Well, consider the English rhetorical device ...and
if that’s true, I'll eat my hat’. Since contradictions simply cannot be
true, if one is true then not only will I eat my hat, I'll have it too. Here
is the formal rule:

1 There are logicians who have qualms about IP, but not about —E. They are
called “intuitionists.” Intuitionists don’t buy our basic assumption that every
sentence has one of two truth values, true or false. They also think that -
works differently—for them, a proof of L from o guarantees —d, but a proof
of L from —~dl does not guarantee that o, but only =—d. So, for them, o and
——¢ are not equivalent.

2The latin name for this principle is ex contradictione quod libet, “from con-
tradiction, anything.”
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m L

A Xm

Note that 9 can be any sentence whatsoever.

The explosion rule is a bit odd. It looks like of arrives in our proof
like a bunny out of a hat. When trying to find proofs, it is very temp-
ting to try to use it everywhere, since it seems so powerful. Resist this
temptation: you can only apply it when you already have 1! And you
get L only when your assumptions are contradictory.

Still, isn’t it odd that from a contradiction anything whatsoever
should follow? Not according to our notion of entailment and validity.
For o entails 9 iff there is no valuation of the sentence letters which
makes of true and 9B false at the same time. Now L is a contradiction—
it is never true, whatever the valuation of the sentence letters. Since
there is no valuation which makes L true, there of course is also no
valuation that makes L true and 9 false! So according to our definition
of entailment, L £ 9B, whatever 9 is. A contradiction entails anything.3

These are all of the basic rules for the proof system for TFL.

Exercicios

A. The following two ‘proofs’ are incorrect. Explain the mistakes they
make.

3There are some logicians who don’t buy this. They think that if o entails
9B, there must be some relevant connection between 9 and %B—and there isn’t
one between L and some arbitrary sentence 9. So these logicians develop
other, “relevant” logics in which you aren’t allowed the explosion rule.
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X N O v oA W N+

Gt L0 N

(~LANA)VL

-LANA
=L

N F‘N N

A

ANBAC)
(BVC)— D

B
BvC
D

AE 3
AE 1

-E 3, 5
X6
VE 1, 2-4, 5-7

AE 1
vl 3
—E 4,2

B. The following three proofs are missing their citations (rule and line
numbers). Add them, to turn them into bona fide proofs. Additionally,
write down the argument that corresponds to each proof.

S v s W N

PAS
S —R

P
S
R
RVE

A— D
AANB

A
D
DVE

S o N

(AANB) — (DVE)
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1 |-L—>(JVL)
2 -L

3 | JVvL

4 | |J

5 7/\j

6 | [J

7 L

8 | |1

9 | |J

10 | J

C. Give a proof for each of the following arguments:

J =]
0-(Qr-0Q) .. ~Q
A—->B—-C)..(ANB)—> C
KANL.. K< L
(CAD)VE..EVD
AoBB-C..A-C
-F-GF—-H..GVH
(ZANK)V(KAM),K —>D..D
PAQVR,P>-R..QVE
ST . .Se(Tvs)

11. =(P - Q) .. -0

12. (P —>Q)..P

PL XN ST @ oM



CAPITULO 16

Construindo
proovas

There is no simple recipe for finding proofs, and there is no substitute
for practice. Here, though, are some rules of thumb and strategies to
keep in mind.

16.1 Working backward from what we want

So you're trying to find a proof of some conclusion 6, which will be
the last line of your proof. The first thing you do is look at € and ask
what the introduction rule is for its main logical operator. This gives
you an idea of what should happen before the last line of the proof.
The justifications for the introduction rule require one or two other
sentences above the last line, or one or two subproofs. Moreover, you
can tell from € what those sentences are, or what the assumptions and
conclusions of the subproof(s) are. Then you can write down those
sentence or outline the subproof(s) above the last line, and treat those
as your new goals.

For example: If your conclusion is a conditional & — 98, plan to use
the —I rule. This requires starting a subproof in which you assume 9.
The subproof ought to end with 9. Then, continue by thinking about
what you should do to get % inside that subproof, and how you can use
the assumption .

119
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If your goal is a conjunction, conditional, or negated sentence, you
should start by working backward in this way. We’ll describe what you
have to do in each of these cases in detail.

Working backward from a conjunction

If we want to prove ol A B, working backward means we should write
A AR at the bottom of our proof, and try to prove it using Al At the top,
we’ll write out the premises of the proof, if there are any. Then, at the
bottom, we write the sentence we want to prove. If it is a conjunction,
we’ll prove it using AL

1 P
k Py
n A
m B
m+1 |AANB Aln,m

For Al we need to prove d first, then prove 8. For the last line, we have
to cite the lines where we (will have) proved 4 and 9, and use AL The

parts of the proof labelled : have to still be filled in. We’ll mark the line
numbers m, n for now. When the proof is complete, these placeholders
can be replaced by actual numbers.

Working backward from a conditional

If our goal is to prove a conditional s — 9B, we’ll have to use —I. This
requires a subproof starting with o and ending with 98. We’ll set up
our proof as follows:
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m+1l |d—>B —ln-m

Again we’ll leave placeholders in the line number slots. We’ll record
the last inference as —I, citing the subproof.

Working backward from a negated sentence

If we want to prove —gf, we’ll have to use —1I.

m+1 | -dA =1 n—m

For -1, we have to start a subproof with assumption of; the last line of
the subproof has to be L. We’ll cite the subproof, and use —I as the
rule.

When working backward, continue to do so as long as you can.
So if you’re working backward to prove § — 9 and have set up a
subproof in which you want to prove 9. Now look at &B. If, say, it is a
conjunction, work backward from it, and write down the two conjuncts
inside your subproof. Etc.

Working backward from a disjunction

Of course, you can also work backward from a disjunction o V %, if
that is your goal. The VI rule requires that you have one of the disjuncts
in order to infer A vV 9. So to work backward, you pick a disjunct, infer
o v % from it, and then continue to look for a proof of the disjunct you
picked:

n+l | AVB vin
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However, you may not be able to prove the disjunct you picked. In

that case you have to backtrack. When you can’t fill in the :, delete
everything, and try with the other disjunct:

n ]
n+l | AVAB VIin

Obviously, deleting everything and starting over is frustrating, so you
should avoid it. If your goal is a disjunction, therefore, you should not
start by working backward: try working forward first, and apply the VI
strategy only when working forward (and working backward using Al
—I, and —I) no longer work.

16.2 Work forward from what you have

Your proof may have premises. And if you’ve worked backward in order
to prove a conditional or a negated sentence, you will have set up sub-
proofs with an assumption, and be looking to prove a final sentence in
the subproof. These premises and assumptions are sentences you can
work forward from in order to fill in the missing steps in your proof.
That means applying elimination rules for the main operators of these
sentences. The form of the rules will tell you what you’ll have to do.

Working forward from a conjunction

To work forward from a sentence of the form o A 9B, we use AE. That
rule allows us to do two things: infer ¢, and infer 9. So in a proof
where we have o A 9B, we can work forward by writing sf and/or %
immediately below the conjunction:

n ANB
n+1 | A AE n
n+2 | B AE n

Usually it will be clear in the particular situation you’re in which one of
o or B you’ll need. It doesn’t hurt, however, to write them both down.
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Working forward from a disjunction

Working forward from a disjunction works a bit differently. To use a
disjunction, we use the VE rule. In order to apply that rule, it is not
enough to know what the disjuncts of the disjunction are that we want
to use. We must also keep in mind what we want to prove. Suppose we
want to prove 6, and we have o vV B to work with. (That & v B may
be a premise of the proof, an assumption of a subproof, or something
already proved.) In order to be able to apply the VE rule, we’ll have to
set up two subproofs:

n AV B

n+1 dA

m 6

m+1 B

k @

k+1 |6 VE n, (n +1)-m, (m +1)-k

The first subproof starts with the first disjunct, o, and ends with the
sentence we’re looking for, 6. The second subproof starts with the
other disjunct, 9, and also ends with the goal sentence 6. Each of
these subproofs have to be filled in further. We can then justify the
goal sentence 6 by using VE, citing the line with & v % and the two
subproofs.

Working forward from a conditional

In order to use a conditional 9§ — 9, you also need the antecedent o
in order to apply —E. So to work forward from a conditional, you will
derive %, justify it by —E, and set up ¢l as a new subgoal.
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n A—> %
m A
m+1 | B —En, m

Working forward from a negated sentence

Finally, to use a negated sentence —d, you would apply —E. It requi-
res, in addition to —d, also the corresponding sentence o without the
negation. The sentence you’ll get is always the same: L. So working
forward from a negated sentence works especially well inside a subproof
that you’ll want to use for —I (or IP). You work forward from —d if you
already have —¢f and you want to prove L. To do it, you set up  as a
new subgoal.

n -9
m d
m+1 | L —-E n, m

16.3 Strategies at work

Suppose we want to show that the argument (AAB)V(AAC) .. AN(BVC)
is valid. We start the proof by writing the premise and conclusion
down. (On a piece of paper, you would want as much space as possible
between them, so write the premises at the top of the sheet and the
conclusion at the bottom.)

1 |(A/\B)V(A/\C)

n |AANBVC)

We now have two options: either work backward from the conclusion,
or work forward from the premise. We’ll pick the second strategy: we
use the disjunction on line 1, and set up the subproofs we need for VE.
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The disjunction on line 1 has two disjuncts, A A B and 4 A C. The goal
sentence you want to prove is AA(BV C). So in this case you have to set
up two subproofs, one with assumption AAB and last line AA(BVC), the
other with assumption A A C and last line 4 A (B V C). The justification
for the conclusion on line # will be VE, citing the disjunction on line 1
and the two subproofs. So your proof now looks like this:

1 (AANB)V(ANACG)
2 AANB
n AAN(BVC)

n+1 ANC

m ANBVC)
m+1 | AN(BVC) VE1, 2-n,n+1-m

You now have two separate tasks, namely to fill in each of the two sub-
proofs. In the first subproof, we now work backward from the conclu-
sion AA(BV C). That is a conjunction, so inside the first subproof, you
will have two separate subgoals: proving 4, and proving B V C. These
subgoals will let you justify line # using Al. Your proof now looks like
this:
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1 (AAB)V(AANC)
2 AANB
i A

n—1 BvC(C
n AN(BVC) ANi,n-1
n+1 ANC

m ANBVCQC)

m+1 | AN(BVCO) VE 1, 2-n, (n + 1)-m

We immediately see that we can get line i from line 2 by AE. So line i
is actually line 3, and can be justified with AE from line 2. The other
subgoal B Vv C is a disjunction. We’ll apply the strategy for working
backward from a disjunctions to line n — 1. We have a choice of which
disjunct to pick as a subgoal, B or C. Picking C wouldn’t work and wed
end up having to backtrack. And you can already see that if you pick
B as a subgoal, you could get that by working forward again from the
conjunction 4 A B on line 2. So we can complete the first subproof as
follows:
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1 (AANB)V(AACG)

2 ANB

3 A AE 2

4 B AE 2

5 BvC vI4

6 AN(BVC) AL 3,5

7 ANC

m ANBVC)

m+1 | AN(BVC) VE 1, 2-6, 7-m

Like line 3, we get line 4 from 2 by AE. Line 5 is justified by VI from
line 4, since we were working backward from a disjunction there.

That’s it for the first subproof. The second subproof is almost exac-
tly the same. We’ll leave it as an exercise.

Remember that when we started, we had the option of working
forward from the premise, or working backward from the conclusion,
and we picked the first option. The second option also leads to a proof,
but it will look different. The first steps would be to work backward from
the conclusion and set up two subgoals, 4 and B Vv C, and then work
forward from the premise to prove them, e.g.,:
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1 (AAB)V(AANC)
2 AANB
k A

k+1 ANC

n A VE1, 2-k, (k+1)-(n-1)
n+1 ANB

) BvC(C
[+1 ANC

m—1 BvC
m BvVC(C VEL, (n+1)-L, (+1)-(m—-1)
m+1 | AN(BVC) Al n, m

We'll leave you to fill in the missing pieces indicated by :.

Let’s give another example to illustrate how to apply the strategies
to deal with conditionals and negation. The sentence (4 — B) —
(B — —4) is a tautology. Let’s see if we can find a proof of it, from
no premises, using the strategies. We first write the sentence at the
bottom of a sheet of paper. Since working forward is not an option
(there is nothing to work forward from), we work backward, and set up
a subproof to establish the sentence we want (4 — B) — (-B — —4)
using —I. Its assumption must be the antecedent of the conditional we
want to prove, i.e., A — B, and its last line the consequent =B — —4.
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1 A— B
n -B — -4
n+l |(A—> B)—> (-B—-4) —ll-n

The new goal, =B — —4 is itself a conditional, so working backward
we set up another subproof:

1 A— B

2

n—1

n -B — -4 —12-(n-1)

n+l |(A—> B)—> (-B—-4) —ll-n

From -4 we again work backward. To do this, look at the —I rule. It
requires a subproof with A4 as assumption, and L as its last line. So the
proof is now:

1 A— B

2 -B

3

n—2

n—1 -4 =1 3-(n—-2)
n -B — -4 —I12-(n-1)

n+l |(A—> B) > (-B—-4) —ll-n

Now our goal is to prove L. We said above, when discussing how to
work forward from a negated sentence, that the —E rule allows you to
prove L, which is our goal in the innermost subproof. So we look for a
negated sentence which we can work forward from: that would be -B
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on line 2. That means we have to derive B inside the subproof, since
—E requires not just B (which we have already), but also B. And B, in
turn, we get by working forward from 4 — B, since —E will allow us to
justify the consequent of that conditional B by —E. The rule —E also
requires the antecedent A of the conditional, but that is also already
available (on line 3). So we finish with:

1 A— B

2 -B

3 A

4 B —-E1,3
5 1 -E 2,4
6 -4 -1 3-5
7 -B — -4 —12-6
8 |(A4d—>B)—> (-B—-4) -—-I1-7

16.4 Working forward from L

When applying the strategies, you will sometimes find yourself in a
situation where you can justify L. Using the explosion rule, this would
allow you to justify anything. So L works like a wildcard in proofs. For
instance, suppose you want to give a proof of the argument AV B, -4 .".
B. You set up your proof, writing the premises 4V B and —4 at the top
on lines 1 and 2, and the conclusion B at the bottom of the page. B has
no main connective, so you can’t work backward from it. Instead, you
must work forward from A4 Vv B: That requires two subproofs, like so:
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1 AV B

2 -4

3 A

m B

m+1

k B

k+1 | B VE 1, 3-m, (m + 1)k

Notice that you have =4 on line 2 and 4 as the assumption of your
first subproof. That gives you L using —E, and from L you get the
conclusion B of the first subroof using X. Recall that you can repeat a
sentence you already have by using the reiteration rule R. So our proof
would be:

1|4vB
2 | -4

3|14

s 1 B2

50 |B X4

6| | B

71 |2 re

8 | B VE 1, 3-5, 6-7

16.5 Proceed indirectly

In very many cases, the strategies of working forward and backward
will eventually pan out. But there are cases where they do not work. If
you cannot find a way to show o directly using those, use IP instead.
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To do this, set up a subproof in which you assume —d and look for a
proof of L inside that subproof.

m+1 | A IP n—m

Here, we have to start a subproof with assumption —g{; the last line of
the subproof has to be L. We’ll cite the subproof, and use IP as the
rule. In the subproof, we now have an additional assumption (on line
n) to work with.

Suppose we used the indirect proof strategy, or we’re in some other
situation where we’re looking for a proof of L. What’s a good candidate?
Of course the obvious candidate would be to use a negated sentence,
since (as we saw above) —E always yields L. If you set up a proof as
above, trying to prove ¢ using IP, you will have =9 as the assumption
of your subproof—so working forward from it to justify L inside your
subproof, you would next set up d as a goal inside your subproof. If
you are using this IP strategy, you will find yourself in the following
situation:

n -9

m-—1 d

m € -En,m-1
m+1 | A IP n—m

This looks weird: We wanted to prove of and the strategies failed us;
so we used IP as a last resort. And now we find ourselves in the same
situation: we are again looking for a proof of 9. But notice that we
are now inside a subproof, and in that subproof we have an additional
assumption (—9f) to work with which we didn’t have before. Let’s look
at an example.
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16.6 Indirect proof of excluded middle

The sentence 4 V —A4 is a tautology, and so should have a proof even
without any premises. But working backward fails us: to get 4 v =4
using VI we would have to prove either 4 or —4—again, from no pre-
mises. Neither of these is a tautology, so we won’t be able to prove
either. Working forward doesn’t work either, since there is nothing to
work forward from. So, the only option is indirect proof.

m+1 | AV -4 IP 1-m

Now we do have something to work forward from: the assumption =(4Vv
—4). To use it, we justify L by —E, citing the assumption on line 1, and
also the corresponding unnegated sentence 4 vV —4, yet to be proved.

1 -(4V —4)

m—1 AV -4

m 1 ~-E1,m-1

m+1 | Av -4 IP 1-m

At the outset, working backward to prove 4 vV =4 by VI did not work.
But we are now in a different situation: we want to prove 4V -4 inside
a subproof. In general, when dealing with new goals we should go back
and start with the basic strategies. In this case, we should first try to
work backward from the disjunction 4 V -4, i.e., we have to pick a
disjunct and try to prove it. Let’s pick =A4. This would let us justify
AV =4 on line m — 1 using VI. Then working backward from -4, we
start another subproof in order to justify -4 using —I. That subproof
must have 4 as the assumption and L as its last line.
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1

2

m—3

m—2 =1 2—(m — 3)
m—1 AV -4 VIm -2

m L -E1l,m-1
m+1 | AV -4 -1 1-m

Inside this new subproof, we again need to justify L. The best way to
do this is to work forward from a negated sentence; (4 V —4) on line 1
is the only negated sentence we can use. The corresponding unnegated
sentence, 4 V =4, however, directly follows from A4 (which we have on
line 2) by VI. Our complete proof is:

1 —(AV —A)

2 A

3 AV -4 vI 2

4 L -E1,3

5 -4 -12-4

6 AV -4 vl 5

7 1 -E1,6

8 | Av -4 -11-7
Exercicios

A. Use the strategies to find proofs for each of the following arguments:

.A—>BA—->C..A—> (BAC)

. AANB)—»C.. A— (B— ()

. A->B—-C)..4->B)—»(4-0)
.AV(BAC)..(AVB)A(AVC)

N R
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5 (AANB)V(AANC). .ANBVC)
6. AVB,A—-CB—-D..CVvD
7. mAV =B .. =(4A A B)
8. AAN-B..-(4— B)
B. Formulate strategies for working backward and forward from d <
R.
C. Use the strategies to find proofs for each of the following sentences:
1. " A—>(A4—-> 1)
2. =(AA—A)
3. (- CO)AB—->C)—[(A4VB)—C]
4. -(4— B) > (AA-B)

5. (AV =B) - (4 > B)

Since these should be proofs of sentences from no premises, you will
start with the respective sentence at the bottom of the proof, which will
have no premises.

D. Use the strategies to find proofs for each one of the following argu-
ments and sentences:

-—4— A4

-A—-B.".B— A

A—> B..-AVB
—~(AAB)—> (mAV —B)
A—->BVC)..(A->B)v(4—- ()
(A—> B)v(B— 4

7. (4A—>B)—> B)—> B

AR AN ol U

These all will require the IP strategy. The last three especially are quite
hard!



CAPITULO 17

Regras

adicionais da
LVF

In §15, we introduced the basic rules of our proof system for TFL. In
this section, we will add some additional rules to our system. Our
extended proof system is a bit easier to work with. (However, in §19 we
will see that they are not strictly speaking necessary.)

17.1  Disjunctive syllogism
Here is a very natural argument form.

Elizabeth is either in Massachusetts or in DC. She is not
in DC. So, she is in Massachusetts.

This inference pattern is called disjunctive syllogism. We add it to our
proof system as follows:

136
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m | AVRB
n | ~d
B DS m, n
and
m | AVR
n | %
A DS m, n

As usual, the disjunction and the negation of one disjunct may occur
in either order and need not be adjacent. However, we always cite the
disjunction first.

17.2 Modus tollens

Another useful pattern of inference is embodied in the following argu-
ment:

If Mitt has won the election, then he is in the White House.
He is not in the White House. So he has not won the
election.

This inference pattern is called modus tollens. The corresponding rule
is:

m|dAd— B
n | %
-9 MT m, n

As usual, the premises may occur in either order, but we always cite
the conditional first.
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17.3 Double-negation elimination

Another useful rule is double-negation elimination. This rule does exactly
what it says on the tin:

m | =

o/} DNE m

The justification for this is that, in natural language, double-
negations tend to cancel out.

That said, you should be aware that context and emphasis can pre-
vent them from doing so. Consider: ‘Jane is not not happy’. Arguably,
one cannot infer Jane is happy’, since the first sentence should be un-
derstood as meaning the same as Jane is not urzhappy’. This is compa-
tible with ‘Jane is in a state of profound indifference’. As usual, moving
to TFL forces us to sacrifice certain nuances of English expressions.

17.4 Excluded middle

Suppose that we can show that if it’s sunny outside, then Bill will have
brought an umbrella (for fear of burning). Suppose we can also show
that, if it’s not sunny outside, then Bill will have brought an umbrella
(for fear of rain). Well, there is no third way for the weather to be. So,
whatever the weather, Bill will have brought an umbrella.

This line of thinking motivates the following rule:

i o
ills
k|| -od
l
B LEM i—j, k-1

The rule is sometimes called the law of excluded middle, since it
encapsulates the idea that of may be true or ~g may be true, but there
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is no middle way where neither is true." There can be as many lines
as you like between i and j, and as many lines as you like between &
and /. Moreover, the subproofs can come in any order, and the second
subproof does not need to come immediately after the first.

To see the rule in action, consider:

P..(PAD)V(PA-D)

Here is a proof corresponding with the argument:

(PAD)V(PA=-D) VIG6

1P

2 D

s| [paD NG
4 (PAD)V(PA-D) VI3
5 =D

6 P A-D ALl 5
7

8

(P AD)V (P A-D) LEM 2-4, 5-7

Here is another example:

1]4—-4

2| |4

3| [ -4 —>E1,2

4| | -4

51 | -4 R 4

6 | -4 LEM 2-3, 4-5

*You may sometimes find logicians or philosophers talking about “tertium
non datur.” That’s the same principle as excluded middle; it means “no third
way.” Logicians who have qualms about indirect proof also have qualms about
LEM.
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17.5 De Morgan Rules

Our final additional rules are called De Morgan’s Laws (named after
Augustus De Morgan). The shape of the rules should be familiar from
truth tables.

The first De Morgan rule is:

(oA A B)
-AV-%B DeMm

m

The second De Morgan is the reverse of the first:

m | sV -%B

—(AANB) DeMm

The third De Morgan rule is the dual of the first:

m | —(oAV B)

- A 9B DeM m

And the fourth is the reverse of the third:

m | s A%

~(AVB) DeMm

These are all of the additional rules of our proof system for TFL.

Exercicios

A. The following proofs are missing their citations (rule and line num-
bers). Add them wherever they are required:
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[
~ (=)} (&1 = [e%} N —

oo = T N CC R N

W — =B
ANW

BV (J ANK)

w
-B
JAK

Lo =0

Lv -0

-L

-0

ﬂ—lL
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Z — (C A=N)
-Z — (N A=0)

(N VC)
-N A=C
-N
-C

CA=N

-Z
N A-C
N

L
-—=(N Vv C)
NvC

REGRAS ADICIONAIS DA LVF

B. Give a proof for each of these arguments:

.EVF, FVG,-F..EANG

. MV(N—->M)..-M — =N
. MVN)A(OVP),N—>P,-P. . MAO
. XAY)VXANZ),~(XAD),DVM ..M

SR ]
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Conceitos de
teoria da
prooa

In this chapter we will introduce some new vocabulary. The following
expression:

sz‘ll,sﬁz,...,sﬂn B

means that there is some proof which starts with assumptions among
d1,dy, ..., 9, and ends with € (and contains no undischarged assump-
tions other than those we started with). Derivatively, we will write:

FA

to mean that there is a proof of o with no assumptions.

The symbol ‘+ is called the single turnstile. We want to emphasize
that this is not the double turnstile symbol (‘¢’) that we introduced in
chapter 11 to symbolize entailment. The single turnstile, ‘+’, concerns
the existence of proofs; the double turnstile, ‘€’, concerns the existence
of valuations (or interpretations, when used for FOL). They are very
different notions.

Armed with our ‘+’ symbol, we can introduce some more termino-
logy. To say that there is a proof of o with no undischarged assumpti-
ons, we write: + &. In this case, we say that o is a THEOREM.

143
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9 is a THEOREM iff + o

To illustrate this, suppose we want to show that ‘~(4 A =4)’ is a
theorem. So we need a proof of ‘=(4 A —4)’ which has no undischar-
ged assumptions. However, since we want to prove a sentence whose
main logical operator is a negation, we will want to start with a subproof
within which we assume ‘4 A =4’, and show that this assumption leads
to contradiction. All told, then, the proof looks like this:

1 AN-A

2 A AE 1

3 | AE 1

4 i -E 3, 2
51 <(AA-4) -I11-4

We have therefore proved ‘~(4 A =4)’ on no (undischarged) assumpti-
ons. This particular theorem is an instance of what is sometimes called
the Law of Non-Contradiction.

To show that something is a theorem, you just have to find a sui-
table proof. It is typically much harder to show that something is not
a theorem. To do this, you would have to demonstrate, not just that
certain proof strategies fail, but that no proof is possible. Even if you
fail in trying to prove a sentence in a thousand different ways, perhaps
the proof is just too long and complex for you to make out. Perhaps
you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences 9 and 9B are PROVABLY EQUIVALENT iff each can
be proved from the other; i.e., both o + % and % + .

As in the case of showing that a sentence is a theorem, it is relatively
easy to show that two sentences are provably equivalent: it just requires
a pair of proofs. Showing that sentences are not provably equivalent
would be much harder: it is just as hard as showing that a sentence is
not a theorem.

Here is a third, related, bit of terminology:
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The sentences 91, oo, . .., 9, are PROVABLY INCONSISTENT iff a
contradiction can be proved from them, i.e., gy, oy, ..., d, + L.
If they are not INCONSISTENT, we call them PROVABLY CONSIS-
TENT.

It is easy to show that some sentences are provably inconsistent:
you just need to prove a contradiction from assuming all the sentences.
Showing that some sentences are not provably inconsistent is much
harder. It would require more than just providing a proof or two; it
would require showing that no proof of a certain kind is possible.

This table summarises whether one or two proofs suffice, or whether
we must reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent?  one proof all possible proofs
equivalent? two proofs all possible proofs
consistent? all possible proofs one proof

Exercicios

A. Show that each of the following sentences is a theorem:

1. 0 -0
2. NV-N
3 JelJVELA-L)]
4. (4> B)—> A4)— A4

B. Provide proofs to show each of the following:

1. C>(EANG),-C—->G+G

2. MA(-N - -M)+(NAM)V-M

3 ZANK)yo> YAM),DAND ->M)+rY - Z
4 WVX) VY VI,X>Y,-ZrWVY

C. Show that each of the following pairs of sentences are provably equi-
valent:

1. RoE EoR
2. G, —|—|—|—|G
3. T—>S,—1S—>—|T
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4. U—1I,-(UA=I)
5. =(C — D),C A-D
6. =G < H, (G < H)

D. If you know that o 9, what can you say about (4 A 6) - %B? What
about (o vV €) - B? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show that two
sentences are not provably equivalent, as it is to show that a sentence
is not a theorem. Why did we claim this? (Hint: think of a sentence
that would be a theorem iff 4 and 9 were provably equivalent.)
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Regras
derivadas

In this section, we will see why we introduced the rules of our proof
system in two separate batches. In particular, we want to show that the
additional rules of §17 are not strictly speaking necessary, but can be
derived from the basic rules of §15.

19.1 Derivation of Reiteration

To illustrate what it means to derive a rule from other rules, first con-
sider reiteration. It is a basic rule of our system, but it is also not
necessary. Suppose you have some sentence on some line of your de-
duction:

m | A

You now want to repeat yourself, on some line £. You could just invoke
the rule R. But equally well, you can do this with other basic rules of

§15:

m o/
k AANsd  Alm,m
k+1 | oA AE k

147
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To be clear: this is not a proof. Rather, it is a proof scheme. After all,
it uses a variable, ‘d’, rather than a sentence of TFL, but the point is
simple: Whatever sentences of TFL we plugged in for ‘d’, and whatever
lines we were working on, we could produce a bona fide proof. So you
can think of this as a recipe for producing proofs.

Indeed, it is a recipe which shows us that, anything we can prove
using the rule R, we can prove (with one more line) using just the basic
rules of §15 without R. That is what it means to say that the rule R can
be derived from the other basic rules: anything that can be justified
using R can be justified using only the other basic rules.

19.2 Derivation of Disjunctive Syllogism
Suppose that you are in a proof, and you have something of this form:
m | AVRB
n | ~d

You now want, on line £, to prove %. You can do this with the rule of
DS, introduced in §17, but equally well, you can do this with the basic
rules of §15:

m Av A

n -d

k o

k+1 T -E n, k

k+2 B Xk+1

k+3 %

k+4 g Rk+3

k+5 | B VE m, k-k +2, k + 3-k + 4

So the DS rule, again, can be derived from our more basic rules. Adding
it to our system did not make any new proofs possible. Anytime you
use the DS rule, you could always take a few extra lines and prove the
same thing using only our basic rules. It is a derived rule.
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19.3 Derivation of Modus Tollens

Suppose you have the following in your proof:

m|d—>RB
n | B
You now want, on line £, to prove . You can do this with the rule

of MT, introduced in §17. Equally well, you can do this with the basic
rules of §15:

m d— R

n -RB

k o

k+1 B —Em, k
k+2 L -En k+1
k+3 | ~d -1 k—k +2

Again, the rule of MT can be derived from the basic rules of §15.

19.4 Derivation of Double-Negation
Elimination

Consider the following deduction scheme:
m -9

k -9
k+1 1 -E m, k

k+2 | d IPk-k+1

Again, we can derive the DNE rule from the basic rules of §15.
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19-5

Suppose

CAPITULO 19. REGRAS DERIVADAS

Derivation of Excluded Middle

you want to prove something using the LEM rule, i.e., you

have in your proof

m d

n | |
k -
l B

You now want, on line / +1, to prove 9. The rule LEM from §17 would
allow you to do it. But can do this with the basic rules of §15?

One option is to first prove o V =g, and then apply VE, i.e. proof

by cases:
m d
n B
k -9
)
i AV A
i+1 | B VE i, m—n, k-1

(We gave a proof of 9 V =gl using only our basic rules in §16.6.)

Here is another way that is a bit more complicated than the ones be-
fore. What you have to do is embed your two subproofs inside another
subproof. The assumption of the subproof will be =9, and the last line
will be L. Thus, the complete subproof is the kind you need to con-
clude 9 using IP. Inside the proof, youd have to do a bit more work to

get L:
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m -ARB

m+1 o/}

n B

n+1 1 -E m, n

n+2 -

l B

[+1 L -E m, [

[+2 - =1 (m+ 1)—(n + 1)
[+3 g =l (n+2)-(l+1)
l+4 L -El+3,1+2
[+5 | A IP m—(l + 4)

Note that because we add an assumption at the top and additional
conclusions inside the subproofs, the line numbers change. You may
have to stare at this for a while before you understand what’s going on.

19.6 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Morgan
rule:
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k+1
k+2
k+3
k+4
k+5
k+6
k+7
k+8

—(d A B)

A ANB

-%B
AV -%B
-9

-A vV -9
-V -B

CAPITULO 19. REGRAS DERIVADAS

ALk kE+1
-Em, k+2
-1k+1-k+3
vIk+4

VIE+6
LEM k—k+5k+6-k+7

Here is a demonstration of how we could derive the second De Morgan

rule:

m

k
k+1
k+2
k+3
k+4
k+5
k+6
k+7
k+8

AV =B
ANRB

-

-8

1

(oA A B)

AE k
AE k

-Ek+3,k+1

-Ek+5 k+2

VEm, k+3-k+4, k+5-k+6
-l k-k+7

Similar demonstrations can be offered explaining how we could derive
the third and fourth De Morgan rules. These are left as exercises.
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Exercicios

A. Provide proof schemes that justify the addition of the third and
fourth De Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of §§17—
18 used derived rules. Replace the use of derived rules, in such proofs,
with only basic rules. You will find some ‘repetition’ in the resulting
proofs; in such cases, offer a streamlined proof using only basic rules.
(This will give you a sense, both of the power of derived rules, and of
how all the rules interact.)

C. Give a proof of o vV —dl. Then give a proof that uses only the basic
rules.

D. Show that if you had LEM as a basic rule, you could justify IP as a
derived rule. That is, suppose you had the proof:

How could you use it to prove g without using IP but with using LEM
as well as all the other basic rules?

E. Give a proof of the first De Morgan rule, but using only the basic
rules, in particular, without using LEM. (Of course, you can combine the
proof using LEM with the proof of LEM. Try to find a proof directly.)



Correcdo e
completude

In §18, we saw that we could use derivations to test for the same con-
cepts we used truth tables to test for. Not only could we use derivati-
ons to prove that an argument is valid, we could also use them to test
if a sentence is a tautology or a pair of sentences are equivalent. We
also started using the single turnstile the same way we used the double
turnstile. If we could prove that o was a tautology with a truth table,
we wrote k£ ¢, and if we could prove it using a derivation, we wrote - o.

You may have wondered at that point if the two kinds of turnstiles
always worked the same way. If you can show that o is a tautology
using truth tables, can you also always show that it is a theorem using
a derivation? Is the reverse true? Are these things also true for valid ar-
guments and pairs of equivalent sentences? As it turns out, the answer
to all these questions and many more like them is yes. We can show
this by defining all these concepts separately and then proving them
equivalent. That is, we imagine that we actually have two notions of
validity, valid. and valid, and then show that the two concepts always
work the same way.

To begin with, we need to define all of our logical concepts separa-
tely for truth tables and derivations. A lot of this work has already been
done. We handled all of the truth table definitions in §11. We have also
already given syntactic definitions for tautologies (theorems) and pairs
of logically equivalent sentences. The other definitions follow naturally.
For most logical properties we can devise a test using derivations, and
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those that we cannot test for directly can be defined in terms of the
concepts that we can define.

For instance, we defined a theorem as a sentence that can be deri-
ved without any premises (p. 144). Since the negation of a contradiction
is a tautology, we can define a SYNTACTIC CONTRADICTION IN TFL as
a sentence whose negation can be derived without any premises. The
syntactic definition of a contingent sentence is a little different. We
don’t have any practical, finite method for proving that a sentence is
contingent using derivations, the way we did using truth tables. So we
have to content ourselves with defining “contingent sentence” negati-
vely. A sentence is SYNTACTICALLY CONTINGENT IN TFL if it is not a
theorem or a contradiction.

A collection of sentences are PROVABLY INCONSISTENT IN TFL if and
only if one can derive a contradiction from them. Consistency, on the
other hand, is like contingency, in that we do not have a practical finite
method to test for it directly. So again, we have to define a term nega-
tively. A collection of sentences is PROVABLY CONSISTENT IN TFL if and
only if they are not provably inconsistent.

Finally, an argument is PROVABLY VALID IN TFL if and only if there is
a derivation of its conclusion from its premises. All of these definitions
are given in Table 20.1.

All of our concepts have now been defined both semantically and
syntactically. How can we prove that these definitions always work the
same way? A full proof here goes well beyond the scope of this book.
However, we can sketch what it would be like. We will focus on showing
the two notions of validity to be equivalent. From that the other con-
cepts will follow quickly. The proof will have to go in two directions.
First we will have to show that things which are syntactically valid will
also be semantically valid. In other words, everything that we can prove
using derivations could also be proven using truth tables. Put symbo-
lically, we want to show that valid, implies valid.. Afterwards, we will
need to show things in the other directions, valid. implies valid,

This argument from + to k is the problem of SOUNDNESS. A proof
system is SOUND if there are no derivations of arguments that can be
shown invalid by truth tables. Demonstrating that the proof system is
sound would require showing that any possible proof is the proof of a
valid argument. It would not be enough simply to succeed when trying
to prove many valid arguments and to fail when trying to prove invalid
ones.

The proof that we will sketch depends on the fact that we initially
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Concept Truth table (semantic) definition Proof-theoretic (syntactic) definition
A sentence whose truth table only has Ts A sentence that can be derived without
Tautology . . .
under the main connective any premises.
. A sentence whose truth table only has Fs | A sentence whose negation can be
Contradiction

under the main connective

derived without any premises

Oosmumma sentence

A sentence whose truth table contains
both Ts and Fs under the main connective

A sentence that is not a theorem or
contradiction

Equivalent sentences

The columns under the main connectives
are identical.

The sentences can be derived from each
other

H.me:m.mw_o_m\ Sentences which do not have a single line | Sentences from which one can derive a
inconsistent in their truth table where they are all true. | contradiction

sentences

Satisfiable/ Sentences which have at least one line in Sentences from which one cannot derive

Consistent sentences

their truth table where they are all true.

a contradiction

Valid argument

An argument whose truth table has no
lines where there are all Ts under main
connectives for the premises and an F
under the main connective for the
conclusion.

An argument where one can derive the
conclusion from the premises

Tabela 20.1: Two ways to define logical concepts.
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defined a sentence of TFL using an inductive definition (see p. 45). We
could have also used inductive definitions to define a proper proof in
TFL and a proper truth table. (Although we didn’t.) If we had these
definitions, we could then use a inductive proof to show the soundness of
TFL. An inductive proof works the same way as an inductive definition.
With the inductive definition, we identified a group of base elements
that were stipulated to be examples of the thing we were trying to define.
In the case of a TFL sentence, the base class was the set of sentence
letters 4, B, C, .... We just announced that these were sentences. The
second step of an inductive definition is to say that anything that is built
up from your base class using certain rules also counts as an example of
the thing you are defining. In the case of a definition of a sentence, the
rules corresponded to the five sentential connectives (see p. 45). Once
you have established an inductive definition, you can use that definition
to show that all the members of the class you have defined have a certain
property. You simply prove that the property is true of the members
of the base class, and then you prove that the rules for extending the
base class don’t change the property. This is what it means to give an
inductive proof.

Even though we don’t have an inductive definition of a proof in
TFL, we can sketch how an inductive proof of the soundness of TFL
would go. Imagine a base class of one-line proofs, one for each of our
eleven rules of inference. The members of this class would look like
this A, B+ AANB;, AANB+A; AV B,~d + B ... etc. Since some
rules have a couple different forms, we would have to have add some
members to this base class, for instance of A % + 9 Notice that these
are all statements in the metalanguage. The proof that TFL is sound is
not a part of TFL, because TFL does not have the power to talk about
itself.

You can use truth tables to prove to yourself that each of these one-
line proofs in this base class is valid.. For instance the proof o, % r
d A B corresponds to a truth table that shows 4,9 £ o A 9B This
establishes the first part of our inductive proof.

The next step is to show that adding lines to any proof will never
change a valid. proof into an invalid, one. We would need to do this
for each of our eleven basic rules of inference. So, for instance, for
Al we need to show that for any proof ¢y, ..., d, + B adding a line
where we use Al to infer € A &, where € A @ can be legitimately
inferred from oy, ..., d,, 9B, would not change a valid proof into an
invalid proof. But wait, if we can legitimately derive € A @ from these
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premises, then € and & must be already available in the proof. They
are either already among 1, ..., s,, %, or can be legitimately derived
from them. As such, any truth table line in which the premises are true
must be a truth table line in which € and < are true. According to
the characteristic truth table for A, this means that 6 A 9 is also true
on that line. Therefore, € A @ validly follows from the premises. This
means that using the AE rule to extend a valid proof produces another
valid proof.

In order to show that the proof system is sound, we would need
to show this for the other inference rules. Since the derived rules are
consequences of the basic rules, it would suffice to provide similar ar-
guments for the 11 other basic rules. This tedious exercise falls beyond
the scope of this book.

So we have shown that o + B implies 4 £ 9. What about the other
direction, that is why think that every argument that can be shown valid
using truth tables can also be proven using a derivation.

This is the problem of completeness. A proof system has the pro-
perty of COMPLETENESS if and only if there is a derivation of every
semantically valid argument. Proving that a system is complete is ge-
nerally harder than proving that it is sound. Proving that a system is
sound amounts to showing that all of the rules of your proof system
work the way they are supposed to. Showing that a system is complete
means showing that you have included all the rules you need, that you
haven’t left any out. Showing this is beyond the scope of this book. The
important point is that, happily, the proof system for TFL is both sound
and complete. This is not the case for all proof systems or all formal
languages. Because it is true of TFL, we can choose to give proofs or
give truth tables—whichever is easier for the task at hand.

Now that we know that the truth table method is interchangeable
with the method of derivations, you can chose which method you want
to use for any given problem. Students often prefer to use truth tables,
because they can be produced purely mechanically, and that seems ‘ea-
sier’. However, we have already seen that truth tables become impos-
sibly large after just a few sentence letters. On the other hand, there
are a couple situations where using proofs simply isn’t possible. We
syntactically defined a contingent sentence as a sentence that couldn’t
be proven to be a tautology or a contradiction. There is no practical
way to prove this kind of negative statement. We will never know if
there isn’t some proof out there that a statement is a contradiction and
we just haven’t found it yet. We have nothing to do in this situation
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Logical . .
gic To prove it present To prove it absent
property
) Find a false line in the
Being a .
Derive the sentence truth table for the
theorem
sentence
. . . Find at line in th
Being a Derive the negation of mca true ine i the
> truth table for the
contradiction the sentence
sentence
Find a false line and a
. L Prove the sentence or
Contingency true line in the truth . :
its negation
table for the sentence
Find a line in the
Equivalence Derive each sentence truth tables for the
from the other sentence where they
have different values
Find a line in truth Deri dicti
Consistency table for the sentence " erlveha contradiction
where they all are true | O™ the sentences
Find a line in the
. Derive the conclusion | truth table where the
Validity . .
from the premises premises are true and
the conclusion false.

Tabela 20.2: When to provide a truth table and when to provide a proof:

but resort to truth tables. Similarly, we can use derivations to prove
two sentences equivalent, but what if we want to prove that they are
not equivalent? We have no way of proving that we will never find the
relevant proof. So we have to fall back on truth tables again.

Table 20.2 summarizes when it is best to give proofs and when it is
best to give truth tables.

Exercicios

A. Use either a derivation or a truth table for each of the following.

1. Show that 4 — [((B A C)V D) — A] is a theorem.



160

©

SR AT SR

10.

11.

12.
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Show that 4 — (4 — B) is not a theorem.

Show that the sentence 4 — —4 is not a contradiction.
Show that the sentence 4 <> =4 is a contradiction.
Show that the sentence -(W — (J V J)) is contingent.

Show that the sentence =(X V (Y V Z)) V(X V (Y V Z)) is not
contingent.

Show that the sentence B — —§ is equivalent to the sentence
-—-B - —|S

Show that the sentence —(X Vv 0) is not equivalent to the sentence
X AO.

Show that the sentences =(4V B), C, C — A are jointly inconsis-
tent.

Show that the sentences =(4 V B), =B, B — A are jointly consis-
tent.

Show that —=(4 Vv (B Vv C)) .".=C is valid.
Show that =(4 A (B V C)) .".=C is invalid.

B. Use either a derivation or a truth table for each of the following.

1.

©

© ® N o s

10.

11.

12.

Show that 4 — (B — A) is a theoremy.

Show that =((N < Q) vV Q) V N) is not a theorem.

Show that Z V (-Z < Z) is contingent.

show that (L & (N — N) — L)) vV H is not contingent.
Show that (4 < A) A (B A =B) is a contradiction.

Show that (B < (C V B)) is not a contradiction.

Show that ((-X < X) Vv X) is equivalent to X.

Show that F' A (K A R) is not equivalent to (F < (K < R)).

Show that the sentences =(W — W), (W & W)AW, EV (W —
=(E A W)) are jointly inconsistent.

Show that the sentences -RV C, (CAR) —» =R, (=(RVR) > R)
are jointly consistent.

Show that =—(C & =C),(GVC)VG) .. (G — C)AG) is valid.
Show that ==L, (C — =L) — C) .. =C is invalid.
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21.1 The need to decompose sentences

Consider the following argument, which is obviously valid in English:

Willard is a logician. All logicians wear funny hats.
.".Willard wears a funny hat.

To symbolize it in TFL, we might offer a symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F: Willard wears a funny hat.

And the argument itself becomes:
LA . F

This is invalid in TFL, but the original English argument is clearly
valid.

The problem is not that we have made a mistake while symbolizing
the argument. This is the best symbolization we can give in 7FL. The
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problem lies with TFL itself. ‘All logicians wear funny hats’ is about
both logicians and hat-wearing. By not retaining this structure in our
symbolization, we lose the connection between Willard’s being a logi-
cian and Willard’s wearing a hat.

The basic units of TFL are sentence letters, and TFL cannot de-
compose these. To symbolize arguments like the preceding one, we will
have to develop a new logical language which will allow us to split the
atom. We will call this language first-order logic, or FOL.

The details of FOL will be explained throughout this chapter, but
here is the basic idea for splitting the atom.

First, we have names. In FOL, we indicate these with lowercase italic
letters. For instance, we might let ‘4’ stand for Bertie, or let ‘4’ stand
for Willard.

Second, we have predicates. English predicates are expressions like

is a dog’ or * is a logician’. These are not complete sen-
tences by themselves. In order to make a complete sentence, we need
to fill in the gap. We need to say something like ‘Bertie is a dog’ or
‘Willard is a logician’. In FOL, we indicate predicates with uppercase
italic letters. For instance, we might let the FOL predicate ‘D’ symbo-
lize the English predicate ° is a dog’. Then the expression ‘D(5)’
will be a sentence in FOL, which symbolizes the English sentence ‘Ber-
tie is a dog’. Equally, we might let the FOL predicate ‘L’ symbolize the
English predicate * is a logician’. Then the expression ‘L(7)’ will
symbolize the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘3 will roughly convey
“There is at least one ... . So we might symbolize the English sentence
‘there is a dog’ with the FOL sentence ‘3x D(x)’, which we would na-
turally read out-loud as ‘there is at least one thing, x, such that x is a
dog’.

That is the general idea, but FOL is significantly more subtle than
TFL, so we will come at it slowly.

<

21.2 Names

In English, a singular term is a word or phrase that refers to a specific
person, place, or thing. The word ‘dog’ is not a singular term, because
there are a great many dogs. The phrase ‘Bertie’ is a singular term,
because it refers to a specific terrier. Likewise, the phrase ‘Philip’s dog
Bertie’ is a singular term, because it refers to a specific little terrier.
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Proper names are a particularly important kind of singular term.
These are expressions that pick out individuals without describing
them. The name ‘Emerson’ is a proper name, and the name alone
does not tell you anything about Emerson. Of course, some names are
traditionally given to boys and other are traditionally given to girls. If
‘Hilary’ is used as a singular term, you might guess that it refers to a
woman. You might, though, be guessing wrongly. Indeed, the name
does not necessarily mean that the person referred to is even a person:
Hilary might be a giraffe, for all you could tell just from the name.

In FOL, our NAMES are lower-case letters ‘a’ through to ‘7’. We can
add subscripts if we want to use some letter more than once. So here
are some singular terms in FOL:

a,b,c,....1 a1, f32, j390, m12

These should be thought of along the lines of proper names in English,
but with one difference. “Tim Button’ is a proper name, but there are
several people with this name. (Equally, there are at least two people
with the name ‘P.D. Magnus’.) We live with this kind of ambiguity in
English, allowing context to individuate the fact that “Tim Button’ refers
to an author of this book, and not some other Tim. In FOL, we do not
tolerate any such ambiguity. Each name must pick out exactly one thing.
(However, two different names may pick out the same thing.)

As with TFL, we can provide symbolization keys. These indicate,
temporarily, what a name will pick out. So we might offer:

e: Elsa
g: Gregor
m: Marybeth

21.3 Predicates

The simplest predicates are properties of individuals. They are things
you can say about an object. Here are some examples of English predi-
cates:

is a dog
is a member of Monty Python
A piano fell on

In general, you can think about predicates as things which combine
with singular terms to make sentences. Conversely, you can start with
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sentences and make predicates out of them by removing terms. Con-
sider the sentence, ‘Vinnie borrowed the family car from Nunzio.” By
removing a singular term, we can obtain any of three different predica-
tes:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

In FOL, PREDICATES are capital letters 4 through Z, with or without
subscripts. We might write a symbolization key for predicates thus:

A(x): x Is angry
H(x): x is happy

(Why the subscripts on the gaps? We will return to this in §23.)

If we combine our two symbolization keys, we can start to sym-
bolize some English sentences that use these names and predicates in
combination. For example, consider the English sentences:

1. Elsa is angry.
2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolize it by ‘4(e)’.

Sentence 2: this is a conjunction of two simpler sentences. The
simple sentences can be symbolized just by ‘4(g)’ and ‘4(m)’. Then
we help ourselves to our resources from TFL, and symbolize the entire
sentence by ‘A(g) A A(m)’. This illustrates an important point: FOL has
all of the truth-functional connectives of TFL.

Sentence 3: this is a conditional, whose antecedent is sentence 1
and whose consequent is sentence 2, so we can symbolize this with

‘Ae) — (A(g) A A(m))’.

21.4 Quantifiers

We are now ready to introduce quantifiers. Consider these sentences:

4. Everyone is happy.
5. Someone is angry.

It might be tempting to symbolize sentence 4 as ‘H(e) A H(g) A H(m) .
Yet this would only say that Elsa, Gregor, and Marybeth are happy. We
want to say that everyone is happy, even those with no names. In order
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to do this, we introduce the vV’ symbol. This is called the UNIVERSAL
QUANTIFIER.

A quantifier must always be followed by a VARIABLE. In FOL, va-
riables are italic lowercase letters ‘s’ through ‘z’, with or without subs-
cripts. So we might symbolize sentence 4 as ‘Vx H(x)’. The variable
‘x’ is serving as a kind of placeholder. The expression ‘Vx’ intuitively
means that you can pick anyone and put them in as ‘x’. The subsequent
‘H(x) indicates, of that thing you picked out, that it is happy.

It should be pointed out that there is no special reason to use ‘x’
rather than some other variable. The sentences ‘Vx H(x)’, ‘Vy H(y)’,
Yz H(z), and ‘Vx5;H (x5)" use different variables, but they will all be
logically equivalent.

To symbolize sentence 5, we introduce another new symbol: the
EXISTENTIAL QUANTIFIER, ‘J’. Like the universal quantifier, the exis-
tential quantifier requires a variable. Sentence 5 can be symbolized by
‘Ax A(x)’. Whereas ‘Vx A(x)’ is read naturally as ‘for all x, x is angry’,
‘Ix A(x)’ is read naturally as ‘there is something, x, such that x is an-
gry’. Once again, the variable is a kind of placeholder; we could just
as easily have symbolized sentence 5 by ‘3z A(2z)’, ‘Twgss A(wase)’, or
whatever.

Some more examples will help. Consider these further sentences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that someone
is angry’. We can then symbolize it using negation and an existential
quantifier: ‘-3x A(x)’. Yet sentence 6 could also be paraphrased as,
‘Everyone is not angry’. With this in mind, it can be symbolized using
negation and a universal quantifier: ‘Vx =4(x)’. Both of these are accep-
table symbolizations. Indeed, it will transpire that, in general, Vx —d
is logically equivalent to =3x 4. (Notice that we have here returned to
the practice of using ‘I’ as a metavariable, from §7.) Symbolizing a
sentence one way, rather than the other, might seem more ‘natural’ in
some contexts, but it is not much more than a matter of taste.

Sentence 7 is most naturally paraphrased as, “There is some x, such
that x is not happy’. This then becomes ‘Jx ~H (x)’. Of course, we could
equally have written ‘=Vx H(x)’, which we would naturally read as ‘it
is not the case that everyone is happy’. That too would be a perfectly
adequate symbolization of sentence 8.
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21.5 Domains

Given the symbolization key we have been using, ‘Vx H(x)’ symbolizes
‘Everyone is happy’. Who is included in this everyone? When we use
sentences like this in English, we usually do not mean everyone now
alive on the Earth. We certainly do not mean everyone who was ever
alive or who will ever live. We usually mean something more modest:
everyone now in the building, everyone enrolled in the ballet class, or
whatever.

In order to eliminate this ambiguity, we will need to specify a po-
MAIN. The domain is the collection of things that we are talking about.
So if we want to talk about people in Chicago, we define the domain to
be people in Chicago. We write this at the beginning of the symboliza-
tion key, like this:

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘Vx’ is to be
read roughly as ‘Every person in Chicago is such that...” and ‘3%’ is to
be read roughly as ‘Some person in Chicago is such that...’.

In FOL, the domain must always include at least one thing. Moreo-
ver, in English we can infer ‘something is angry’ from ‘Gregor is angry’.
In FOL, then, we will want to be able to infer ‘3x A(x)’ from ‘4(g)’. So
we will insist that each name must pick out exactly one thing in the
domain. If we want to name people in places beside Chicago, then we
need to include those people in the domain.

A domain must have at least one member. A name must pick
out exactly one member of the domain, but a member of the
domain may be picked out by one name, many names, or none
at all.

Even allowing for a domain with just one member can produce
some strange results. Suppose we have this as a symbolization key:

domain: the Eiffel Tower
P(x): x is in Paris.

The sentence Vx P(x) might be paraphrased in English as ‘Everything
is in Paris.” Yet that would be misleading. It means that everything iz
the domain is in Paris. This domain contains only the Eiffel Tower, so
with this symbolization key Vx P(x) just means that the Eiffel Tower is
in Paris.
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Non-referring terms

In FOL, each name must pick out exactly one member of the domain.
A name cannot refer to more than one thing—it is a singular term.
Each name must still pick out something. This is connected to a classic
philosophical problem: the so-called problem of non-referring terms.

Medieval philosophers typically used sentences about the chimera
to exemplify this problem. Chimera is a mythological creature; it does
not really exist. Consider these two sentences:

9. Chimera is angry.
10. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.” The symboliza-
tion key would look like this:

domain: creatures on Earth
A(x): x s angry.
¢: chimera

We could then symbolize sentence g as 4A(¢) and sentence 10 as ~A(c¢).

Problems will arise when we ask whether these sentences are true
or false.

One option is to say that sentence g is not true, because there is
no chimera. If sentence g is false because it talks about a non-existent
thing, then sentence 10 is false for the same reason. Yet this would mean
that A(¢) and —4(c¢) would both be false. Given the truth conditions for
negation, this cannot be the case.

Since we cannot say that they are both false, what should we do?
Another option is to say that sentence g is meaningless because it talks
about a non-existent thing. So A(¢) would be a meaningful expression
in FOL for some interpretations but not for others. Yet this would make
our formal language hostage to particular interpretations. Since we are
interested in logical form, we want to consider the logical force of a
sentence like A(¢) apart from any particular interpretation. If A(c) were
sometimes meaningful and sometimes meaningless, we could not do
that.

This is the problem of non-referring terms, and we will return to it
later (see p. 197.) The important point for now is that each name of
FOL must refer to something in the domain, although the domain can
contain any things we like. If we want to symbolize arguments about
mythological creatures, then we must define a domain that includes
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them. This option is important if we want to consider the logic of sto-
ries. We can symbolize a sentence like ‘Sherlock Holmes lived at 221B
Baker Street’ by including fictional characters like Sherlock Holmes in
our domain.



CAPITULO 22

Sentencas com
um
quantificador

We now have all of the pieces of FOL. Symbolizing more complicated
sentences will only be a matter of knowing the right way to combine
predicates, names, quantifiers, and connectives. There is a knack to
this, and there is no substitute for practice.

22.1 Common quantifier phrases

Consider these sentences:

1. Every coin in my pocket is a quarter.

2. Some coin on the table is a dime.

3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain. Since
we are talking about coins in my pocket and on the table, the domain
must at least contain all of those coins. Since we are not talking about
anything besides coins, we let the domain be all coins. Since we are
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not talking about any specific coins, we do not need to deal with any
names. So here is our key:

domain: all coins

P(x): x is in my pocket
T(x): x is on the table
Q(x): x is @ quarter
D(x): x is a dime

Sentence 1 is most naturally symbolized using a universal quantifier.
The universal quantifier says something about everything in the do-
main, not just about the coins in my pocket. Sentence 1 can be paraph-
rased as ‘for any coin, if that coin is in my pocket then it is a quarter’.
So we can symbolize it as ‘Vx(P(x) — Q(x))’.

Since sentence 1 is about coins that are both in my pocket and that
are quarters, it might be tempting to symbolize it using a conjunction.
However, the sentence ‘Vx(P(x) A Q(x))’ would symbolize the sentence
‘every coin is both a quarter and in my pocket’. This obviously means
something very different than sentence 1. And so we see:

A sentence can be symbolized as Vx(F(x) — €(x)) if it can be
paraphrased in English as ‘every F is G’.

Sentence 2 is most naturally symbolized using an existential quan-
tifier. It can be paraphrased as ‘there is some coin which is both on the
table and which is a dime’. So we can symbolize it as ‘Ix(7"(x) A D(x))’.

Notice that we needed to use a conditional with the universal quan-
tifier, but we used a conjunction with the existential quantifier. Suppose
we had instead written ‘Ix(7"(x) — D(x))’. That would mean that there
is some object in the domain of which ‘(7' (x) — D(x)) is true. Re-
call that, in TFL, o — 9 is logically equivalent (in TFL) to —~d Vv .
This equivalence will also hold in FOL. So ‘Ix(T'(x) — D(x))’ is true
if there is some object in the domain, such that ‘(=7 (x) vV D(x))’ is true
of that object. That is, ‘Ix(7'(x) — D(x))’ is true if some coin is either
not on the table or is a dime. Of course there is a coin that is not on
the table: there are coins in lots of other places. So it is very easy for
‘Ax(T'(x) — D(x))’ to be true. A conditional will usually be the natural
connective to use with a universal quantifier, but a conditional within
the scope of an existential quantifier tends to say something very weak
indeed. As a general rule of thumb, do not put conditionals in the
scope of existential quantifiers unless you are sure that you need one.
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A sentence can be symbolized as Jx(F(x) A €(x)) if it can be
paraphrased in English as ‘some F is G’.

Sentence 3 can be paraphrased as, ‘It is not the case that every
coin on the table is a dime’. So we can symbolize it by ‘“=Vx(7T'(x) —
D(x))’. You might look at sentence 3 and paraphrase it instead as,
‘Some coin on the table is not a dime’. You would then symbolize it by
‘Fx(T (x)A-D(x))’. Although it is probably not immediately obvious yet,
these two sentences are logically equivalent. (This is due to the logical
equivalence between —Vx ol and 3x—9l, mentioned in §21, along with
the equivalence between —(dd — %) and o A —98.)

Sentence 4 can be paraphrased as, ‘It is not the case that there
is some dime in my pocket’. This can be symbolized by ‘~3x(P(x) A
D(x)). It might also be paraphrased as, ‘Everything in my pocket is
a non-dime’, and then could be symbolized by ‘Vx(P(x) — -D(x)).
Again the two symbolizations are logically equivalent; both are correct
symbolizations of sentence 4.

22.2 Empty predicates

In §21, we emphasized that a name must pick out exactly one object
in the domain. However, a predicate need not apply to anything in the
domain. A predicate that applies to nothing in the domain is called an
EMPTY PREDICATE. This is worth exploring.

Suppose we want to symbolize these two sentences:

5. Every monkey knows sign language
6. Some monkey knows sign language

It is possible to write the symbolization key for these sentences in this
way:

domain: animals
M(x): x is a monkey.
S(x): x knows sign language.

Sentence 5 can now be symbolized by ‘Vx(M(x) — S(x))’. Sentence 6
can be symbolized as ‘Ix(M(x) A S(x))’.

It is tempting to say that sentence 5 entails sentence 6. That is, we
might think that it is impossible for it to be the case that every monkey
knows sign language, without its also being the case that some monkey
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knows sign language, but this would be a mistake. It is possible for
the sentence ‘Vx(M(x) — S(x)) to be true even though the sentence
‘Tx(M(x) A S(x)) is false.

How can this be? The answer comes from considering whether
these sentences would be true or false if there were no monkeys. If there
were no monkeys at all (in the domain), then ‘Vx(M(x) — S(x))’ would
be vacuously true: take any monkey you like—it knows sign language!
But if there were no monkeys at all (in the domain), then ‘Ix(M(x) A
S(x))” would be false.

Another example will help to bring this home. Suppose we extend
the above symbolization key, by adding:

R(x): x s a refrigerator

Now consider the sentence ‘Vx(R(x) — M(x))’. This symbolizes ‘every
refrigerator is a monkey’. This sentence is true, given our symbolization
key, which is counterintuitive, since we (presumably) do not want to say
that there are a whole bunch of refrigerator monkeys. It is important
to remember, though, that ‘Vx(R(x) — M(x))’ is true iff any member
of the domain that is a refrigerator is a monkey. Since the domain
is animals, there are no refrigerators in the domain. Again, then, the
sentence is vacuously true.

If you were actually dealing with the sentence ‘All refrigerators are
monkeys’, then you would most likely want to include kitchen applian-
ces in the domain. Then the predicate ‘R’ would not be empty and the
sentence ‘Vx(R(x) — M(x))’ would be false.

When & is an empty predicate, a sentence Vx(F(x) — ...) will
be vacuously true.

22.3 Picking a domain

The appropriate symbolization of an English language sentence in FOL
will depend on the symbolization key. Choosing a key can be difficult.
Suppose we want to symbolize the English sentence:

7. Every rose has a thorn.
We might offer this symbolization key:

R(x): x is a rose
T (x): x has a thorn
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It is tempting to say that sentence 7 should be symbolized as ‘Vx(R(x) —
T (x))’, but we have not yet chosen a domain. If the domain contains all
roses, this would be a good symbolization. Yet if the domain is merely
things on my kitchen table, then ‘Vx(R(x) — T (x))’ would only come close
to covering the fact that every rose on my kitchen table has a thorn. If
there are no roses on my kitchen table, the sentence would be trivially
true. This is not what we want. To symbolize sentence 7 adequately,
we need to include all the roses in the domain, but now we have two
options.

First, we can restrict the domain to include all roses but only roses.
Then sentence 7 can, if we like, be symbolized with Vx T'(x)’. This
is true iff everything in the domain has a thorn; since the domain is
just the roses, this is true iff every rose has a thorn. By restricting the
domain, we have been able to symbolize our English sentence with a
very short sentence of FOL. So this approach can save us trouble, if
every sentence that we want to deal with is about roses.

Second, we can let the domain contain things besides roses: rhodo-
dendrons; rats; rifles; whatevers, and we will certainly need to include
a more expansive domain if we simultaneously want to symbolize sen-
tences like:

8. Every cowboy sings a sad, sad song.

Our domain must now include both all the roses (so that we can symbo-
lize sentence 7) and all the cowboys (so that we can symbolize sentence
8). So we might offer the following symbolization key:

domain: people and plants

C(x): x is a cowboy

S(x): x sings a sad, sad song
R(x): x is a rose

T (x): x has a thorn

Now we will have to symbolize sentence 7 with ‘Vx(R(x) — T'(x))’, since
‘VYx T'(x)’ would symbolize the sentence ‘every person or plant has a
thorn’. Similarly, we will have to symbolize sentence 8 with ‘Vx(C(x) —
S(x)).

In general, the universal quantifier can be used to symbolize the
English expression ‘everyone’ if the domain only contains people. If
there are people and other things in the domain, then ‘everyone’ must
be treated as ‘every person’.
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22.4 The utility of paraphrase

When symbolizing English sentences in FOL, it is important to unders-
tand the structure of the sentences you want to symbolize. What matters
is the final symbolization in FOL, and sometimes you will be able to
move from an English language sentence directly to a sentence of FOL.
Other times, it helps to paraphrase the sentence one or more times.
Each successive paraphrase should move from the original sentence
closer to something that you can easily symbolize directly in FOL.
For the next several examples, we will use this symbolization key:

domain: people

B(x): x is a bassist.
R(x): » is a rock star.
k: Kim Deal

Now consider these sentences:

9. If Kim Deal is a bassist, then she is a rock star.
10. If a person is a bassist, then she is a rock star.

The same words appear as the consequent in sentences g and 10 (...
she is a rock star’), but they mean very different things. To make this
clear, it often helps to paraphrase the original sentences, removing pro-
nouns.

Sentence g can be paraphrased as, ‘If Kim Deal is a bassist, then
Kim Deal is a rockstar’. This can obviously be symbolized as ‘B(k) —
R(k).

Sentence 10 must be paraphrased differently: ‘If a person is a bas-
sist, then that person is a rock star’. This sentence is not about any
particular person, so we need a variable. As an intermediate step, we
can paraphrase this as, ‘For any person x, if x is a bassist, then x is a
rockstar’. Now this can be symbolized as ‘Vx(B(x) — R(x))’. This is
the same sentence we would have used to symbolize ‘Everyone who is
a bassist is a rock star’. On reflection, that is surely true iff sentence 10
is true, as we would hope.

Consider these further sentences:

11. If anyone is a bassist, then Kim Deal is a rock star.
12. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 11 and 12 (‘If
anyone is a bassist...”), but it can be tricky to work out how to symbo-
lize these two uses. Again, paraphrase will come to our aid.
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Sentence 11 can be paraphrased, ‘If there is at least one bassist,
then Kim Deal is a rock star’. It is now clear that this is a conditio-
nal whose antecedent is a quantified expression; so we can symbolize
the entire sentence with a conditional as the main logical operator:
‘IxB(x) — R(k).

Sentence 12 can be paraphrased, ‘For all people «, if x is a bassist,
then x is a rock star’. Or, in more natural English, it can be paraphrased
by ‘All bassists are rock stars’. It is best symbolized as ‘Vx(B(x) —
R(x)), just like sentence 10.

The moral is that the English words ‘any’ and ‘anyone’ should ty-
pically be symbolized using quantifiers, and if you are having a hard
time determining whether to use an existential or a universal quantifier,
try paraphrasing the sentence with an English sentence that uses words
besides ‘any’ or ‘anyone’.

22.5 Quantifiers and scope

Continuing the example, suppose we want to symbolize these sentences:

13. If everyone is a bassist, then Lars is a bassist
14. Everyone is such that, if they are a bassist, then Lars is a bassist.

To symbolize these sentences, we will have to add a new name to the
symbolization key, namely:

l: Lars

Sentence 13 is a conditional, whose antecedent is ‘everyone is a bassist’,
so we will symbolize it with ‘Vx B(x) — B(/)’. This sentence is necessarily
true: if everyone is indeed a bassist, then take any one you like—for
example Lars—and he will be a bassist.

Sentence 14, by contrast, might best be paraphrased by ‘every per-
son x is such that, if x is a bassist, then Lars is a bassist’. This is
symbolized by ‘Vx(B(x) — B(/))’. This sentence is false; Kim Deal is a
bassist. So ‘B(k)’ is true. Suppose that Lars is not a bassist (say, he’s a
drummer instead), so ‘B(/)’ is false. Accordingly, ‘B(k) — B(I)’ will be
false, so ‘Vx(B(x) — B(l))’ will be false as well.

In short, ‘VxB(x) — B(l)’ and ‘Vx(B(x) — B([))’ are very different
sentences. We can explain the difference in terms of the scope of the
quantifier. The scope of quantification is very much like the scope of
negation, which we considered when discussing TFL, and it will help
to explain it in this way.
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In the sentence ‘~B(k) — B(/)’, the scope of ‘=’ is just the ante-
cedent of the conditional. We are saying something like: if ‘B(k)’ is
false, then ‘B(!)’ is true. Similarly, in the sentence ‘VxB(x) — B(I)’, the
scope of ‘Vx’ is just the antecedent of the conditional. We are saying
something like: if ‘B(x)’ is true of everything, then ‘B([)’ is also true.

In the sentence ‘~(B(k) — B(l)), the scope of ‘=’ is the entire
sentence. We are saying something like: ‘(B(k) — B(/))’ is false. Simi-
larly, in the sentence ‘Vx(B(x) — B([))’, the scope of ‘Vx’ is the entire
sentence. We are saying something like: ‘(B(x) — B([))’ is true of
everything.

The moral of the story is simple. When you are using conditionals,
be very careful to make sure that you have sorted out the scope correctly.

Ambiguous predicates

Suppose we just want to symbolize this sentence:
15. Adina is a skilled surgeon.

Let the domain be people, let K(x) mean ‘x is a skilled surgeon’, and
let @ mean Adina. Sentence 15 is simply K(a).
Suppose instead that we want to symbolize this argument:

The hospital will only hire a skilled surgeon. All surgeons
are greedy. Billy is a surgeon, but is not skilled. Therefore,
Billy is greedy, but the hospital will not hire him.

We need to distinguish being a skilled surgeon from merely being a sur-
geon. So we define this symbolization key:

domain: people
G(x): x is greedy.
H(x): The hospital will hire x-
R(x): x i a surgeon.
K(x): x 1is skilled.
b: Billy

Now the argument can be symbolized in this way:

Vx [—|(R(x) A K(x)) — —|H(x)]
Vx(R(x) — G(x))
R(b) A=K (b)

.. G(b)y AN—H(b)

Next suppose that we want to symbolize this argument:
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Carol is a skilled surgeon and a tennis player. Therefore,
Carol is a skilled tennis player.

If we start with the symbolization key we used for the previous argu-
ment, we could add a predicate (let 7(x) mean ‘x is a tennis player’)
and a name (let ¢ mean Carol). Then the argument becomes:

(R(c) A K(c)) AT(c)
W T()NK(c)

This symbolization is a disaster! It takes what in English is a terrible
argument and symbolizes it as a valid argument in FOL. The problem
is that there is a difference between being skilled as a surgeon and skilled
as a tennis player. Symbolizing this argument correctly requires two
separate predicates, one for each type of skill. If we let Kj(x) mean ‘x
is skilled as a surgeon’ and Ky(x) mean ‘x is skilled as a tennis player,’
then we can symbolize the argument in this way:

(R(¢) A K1(e)) AT (e)
. T(c) A Ky(c)

Like the English language argument it symbolizes, this is invalid.

The moral of these examples is that you need to be careful of sym-
bolizing predicates in an ambiguous way. Similar problems can arise
with predicates like good, bad, big, and small. Just as skilled surgeons
and skilled tennis players have different skills, big dogs, big mice, and
big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled surgeon’,
rather than two predicates ‘x is skilled’ and ‘x is a surgeon’® Sometimes.
As sentence 15 shows, sometimes we do not need to distinguish between
skilled surgeons and other surgeons.

Must we always distinguish between different ways of being skilled,
good, bad, or big? No. As the argument about Billy shows, sometimes
we only need to talk about one kind of skill. If you are symbolizing
an argument that is just about dogs, it is fine to define a predicate that
means ‘x is big.” If the domain includes dogs and mice, however, it is
probably best to make the predicate mean ‘x is big for a dog.’

Exercicios

A. Here are the syllogistic figures identified by Aristotle and his suc-
cessors, along with their medieval names:
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Barbara. All G are F. All H are G. So: All H are F
Celarent. No G are F. All H are G. So: No H are F

Ferio. No G are F. Some H is G. So: Some H is not F
Darii. All G are F. Some H is G. So: Some H is F.
Camestres. All F are G. No H are G. So: No H are F.
Cesare. No F are G. All H are G. So: No H are F.

Baroko. All F are G. Some H is not G. So: Some H is not F.
Festino. No F are G. Some H are G. So: Some H is not F.
Datisi. All G are F. Some G is H. So: Some H is F.
Disamis. Some G is F. All G are H. So: Some H is F.

. Ferison. No G are F. Some G is H. So: Some H is not F.
Bokardo. Some G is not F. All G are H. So: Some H is not F.
13. Camenes. All F are G. No G are H So: No His F.

14. Dimaris. Some F is G. All G are H. So: Some H is F.

15. Fresison. No F are G. Some G is H. So: Some H is not F.

CL XN T2 M
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Symbolize each argument in FOL.

B. Using the following symbolization key:

domain: people
K(x): x knows the combination to the safe
S(x): x is a spy
V(x): x Is a vegetarian
h: Hofthor
i: Ingmar

symbolize the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.

2. No spy knows the combination to the safe.

3. No one knows the combination to the safe unless Ingmar does.
4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:

domain: all animals

A(x): x is an alligator.
M(x): x is a monkey.
R(x): x is a reptile.
Z(x): « lives at the zoo.
a: Amos
b: Bouncer

¢: Cleo
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symbolize each of the following sentences in FOL:

PN o ® b

Amos, Bouncer, and Cleo all live at the zoo.

Bouncer is a reptile, but not an alligator.

Some reptile lives at the zoo.

Every alligator is a reptile.

Any animal that lives at the zoo is either a monkey or an alligator.
There are reptiles which are not alligators.

If any animal is an reptile, then Amos is.

If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolization key and symbolize the
argument in FOL.

1.

Willard is a logician. All logicians wear funny hats. So Willard
wears a funny hat

. Nothing on my desk escapes my attention. There is a computer

on my desk. As such, there is a computer that does not escape
my attention.

All my dreams are black and white. Old TV shows are in black
and white. Therefore, some of my dreams are old TV shows.
Neither Holmes nor Watson has been to Australia. A person
could see a kangaroo only if they had been to Australia or to
a zoo. Although Watson has not seen a kangaroo, Holmes has.
Therefore, Holmes has been to a zoo.

No one expects the Spanish Inquisition. No one knows the trou-
bles I've seen. Therefore, anyone who expects the Spanish Inqui-
sition knows the troubles I've seen.

All babies are illogical. Nobody who is illogical can manage a
crocodile. Berthold is a baby. Therefore, Berthold is unable to
manage a crocodile.
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Generalidade
miultipla

So far, we have only considered sentences that require one-place pre-
dicates and one quantifier. The full power of FOL really comes out
when we start to use many-place predicates and multiple quantifiers.
For this insight, we largely have Gottlob Frege (1879) to thank, but also
C.S. Peirce.

23.1 Many-placed predicates

All of the predicates that we have considered so far concern properties
that objects might have. Those predicates have one gap in them, and
to make a sentence, we simply need to slot in one term. They are
ONE-PLACE predicates.

However, other predicates concern the relation between two things.
Here are some examples of relational predicates in English:

loves
is to the left of
is in debt to

These are TWO-PLACE predicates. They need to be filled in with two
terms in order to make a sentence. Conversely, if we start with an
English sentence containing many singular terms, we can remove two
singular terms, to obtain different two-place predicates. Consider the
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sentence ‘Vinnie borrowed the family car from Nunzio’. By deleting two
singular terms, we can obtain any of three different two-place predicates

Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

and by removing all three singular terms, we obtain a THREE-PLACE
predicate:

borrowed from

Indeed, there is no in principle upper limit on the number of places
that our predicates may contain.

Now there is a little foible with the above. We have used the same
symbol, ’, to indicate a gap formed by deleting a term from a
sentence. However (as Frege emphasized), these are different gaps. To
obtain a sentence, we can fill them in with the same term, but we can
equally fill them in with different terms, and in various different orders.
The following are all perfectly good sentences, and they all mean very
different things:

Karl loves Karl
Karl loves Imre
Imre loves Karl
Imre loves Imre

The point is that we need to keep track of the gaps in predicates, so
that we can keep track of how we are filling them in.

To keep track of the gaps, we will label them. The labelling conven-
tions we will adopt are best explained by example. Suppose we want
to symbolize the following sentences:

Karl loves Imre.

Imre loves himself.

Karl loves Imre, but not vice versa.
4. Karl is loved by Imre.

Sl

We will start with the following representation key:

domain: people
i: Imre
k: Karl
L(x,y): x loves y
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Sentence 1 will now be symbolized by ‘L(k, 7).

Sentence 2 can be paraphrased as ‘Imre loves Imre’. It can now be
symbolized by ‘L(i, i)’

Sentence 3 is a conjunction. We might paraphrase it as ‘Karl lo-
ves Imre, and Imre does not love Karl’. It can now be symbolized by
‘L(k,i) N—L(i, k).

Sentence 4 might be paraphrased by ‘Imre loves Karl’. It can then
be symbolized by ‘L(i, k). Of course, this slurs over the difference in
tone between the active and passive voice; such nuances are lost in
FOL.

This last example, though, highlights something important. Sup-
pose we add to our symbolization key the following:

M(x,y): , loves x

Here, we have used the same English word (‘loves’) as we used in our
symbolization key for ‘L(x, y)’. However, we have swapped the order of
the gaps around (just look closely at those little subscripts!) So ‘M (£, i)’
and ‘L(i, k)’ now both symbolize ‘Imre loves Karl’. ‘M (i, k)’ and ‘L(k, i)’
now both symbolize ‘Karl loves Imre’. Since love can be unrequited,
these are very different claims.

The moral is simple. When we are dealing with predicates with
more than one place, we need to pay careful attention to the order of
the places.

23.2 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is potentially
ambiguous. It might mean either of the following:

5. For every person x, there is some person that x loves
6. There is some particular person whom every person loves

Sentence 5 can be symbolized by ‘Vx3y L(x, y)’, and would be true of
a love-triangle. For example, suppose that our domain of discourse is
restricted to Imre, Juan and Karl. Suppose also that Karl loves Imre
but not Juan, that Imre loves Juan but not Karl, and that Juan loves
Karl but not Imre. Then sentence j is true.

Sentence 6 is symbolized by ‘JyVx L(x,y)’. Sentence 6 is not true
in the situation just described. Again, suppose that our domain of
discourse is restricted to Imre, Juan and Karl. This requires that all of
Juan, Imre and Karl converge on (at least) one object of love.
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The point of the example is to illustrate that the order of the quan-
tifiers matters a great deal. Indeed, to switch them around is called a
quantifier shift fallacy. Here is an example, which comes up in various
forms throughout the philosophical literature:

For every person, there is some truth they cannot know.  (V3)
.". There is some truth that no person can know. av)

This argument form is obviously invalid. It’s just as bad as:*

Every dog has its day. (V3)
.". There is a day for all the dogs. av)

The order of quantifiers is also important in definitions in mathe-
matics. For instance, there is a big difference between pointwise and
uniform continuity of functions:

> A function f is pointwise continuous if

VerVy36(|x —y| <6 — \f(x) - f(y)| <€)
> A function f is uniformly continuous if

VeEéVxVydx —y| <6 — \f(x) - f(y)| <€)

The moral is: take great care with the order of quantification.

23.3 Stepping-stones to symbolization

Once we have the possibility of multiple quantifiers and many-place
predicates, representation in FOL can quickly start to become a bit
tricky. When you are trying to symbolize a complex sentence, we re-
commend laying down several stepping stones. As usual, this idea is
best illustrated by example. Consider this representation key:

domain: people and dogs

D(x): _ ,isadog
F(x,y): . is a friend of y
O(x,y): » Owns 5
g: Geraldo

Now let’s try to symbolize these sentences:

1Thanks to Rob Trueman for the example.
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Geraldo is a dog owner.

Someone is a dog owner.

All of Geraldo’s friends are dog owners.

10. Every dog owner is a friend of a dog owner.

11. Every dog owner’s friend owns a dog of a friend.

© L o

Sentence 7 can be paraphrased as, “There is a dog that Geraldo owns’.
This can be symbolized by ‘Ix(D(x) A O(g, x))’.

Sentence 8 can be paraphrased as, “There is some y such that
y is a dog owner’. Dealing with part of this, we might write
‘Jy(y is a dog owner)’. Now the fragment we have left as ‘y is a dog
owner’ is much like sentence 7, except that it is not specifically about
Geraldo. So we can symbolize sentence 8 by:

Ay3Ax(D(x) A O(y, x))

We should pause to clarify something here. In working out how to
symbolize the last sentence, we wrote down ‘Jy(y is a dog owner)’. To
be very clear: this is neither an FOL sentence nor an English sentence:
it uses bits of FOL (‘Z, ‘y’) and bits of English (‘dog owner’). It is
really is just a stepping-stone on the way to symbolizing the entire English
sentence with a FOL sentence. You should regard it as a bit of rough-
working-out, on a par with the doodles that you might absent-mindedly
draw in the margin of this book, whilst you are concentrating fiercely
on some problem.

Sentence g can be paraphrased as, ‘Everyone who is a friend of
Geraldo is a dog owner’. Using our stepping-stone tactic, we might
write

Vx[F(x g) — x is a dog owner]|

Now the fragment that we have left to deal with, ‘x is a dog owner’, is
structurally just like sentence 7. However, it would be a mistake for us
simply to write

Vx [F(x, g) — Jx(D(x) A O(x, x))]

for we would here have a clash of variables. The scope of the universal
quantifier, ‘Vx’, is the entire conditional, so the ‘4’ in ‘D(x)’ should be
governed by that, but ‘D(x)’ also falls under the scope of the existential
quantifier ‘3x’, so the ‘¥’ in ‘D(x)’ should be governed by that. Now
confusion reigns: which ‘x’ are we talking about? Suddenly the sentence
becomes ambiguous (if it is even meaningful at all), and logicians hate
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ambiguity. The broad moral is that a single variable cannot serve two
quantifier-masters simultaneously.

To continue our symbolization, then, we must choose some diffe-
rent variable for our existential quantifier. What we want is something
like:

Vx [F(x, g) — Jz(D(z) A O(x, z))]
This adequately symbolizes sentence g.

Sentence 10 can be paraphrased as ‘For any x that is a dog owner,
there is a dog owner who x is a friend of’. Using our stepping-stone
tactic, this becomes

Vx[x is a dog owner — Jy(y is a dog owner A F(x,y))]
Completing the symbolization, we end up with
Vx[32(D(2) A O(x, z)) — Fy(Fz(D(2) A O(y, 2)) A F(x,))]

Note that we have used the same letter, ‘2’, in both the antecedent and
the consequent of the conditional, but that these are governed by two
different quantifiers. This is ok: there is no clash here, because it is
clear which quantifier that variable falls under. We might graphically
represent the scope of the quantifiers thus:

scope of ‘Vx’

scope of Iy’

scope of 1st ‘32’ scope of 2nd ‘32’

Vx[EIz(D(z) A O(x,z)) — Fy(Fz(D(2) A O(y, 2)) /\F(x,y))]

This shows that no variable is being forced to serve two masters simul-
taneously.
Sentence 11 is the trickiest yet. First we paraphrase it as ‘For any
x that is a friend of a dog owner, ¥ owns a dog which is also owned by
a friend of x’. Using our stepping-stone tactic, this becomes:
Vix[x is a friend of a dog owner —

x owns a dog which is owned by a friend of x|
Breaking this down a bit more:

Vx[3p(F(x,y) Ay is a dog owner) —
y(D(y) A O(x,y) A y is owned by a friend of x)|
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And a bit more:

Vx[Fp(F(x,y) A 32(D(2) A O(p, 2))) —
Fy(D(y) A O(x, ) A 32(F(z, %) A 0(z,9)))]

And we are done!

23.4 Supressed quantifiers

Logic can often help to get clear on the meanings of English claims,
especially where the quantifiers are left implicit or their order is ambi-
guous or unclear. The clarity of expression and thinking afforded by
FOL can give you a significant advantage in argument, as can be seen
in the following takedown by British political philosopher Mary Astell
(1666-1731) of her contemporary, the theologian William Nicholls. In
Discourse IV: The Duty of Wives to their Husbands of his The Duty
of Inferiors towards their Superiors, in Five Practical Discourses (London
1701), Nicholls argued that women are naturally inferior to men. In
the preface to the 3rd edition of her treatise Some Reflections upon Mar-
riage, Occasion'd by the Duke and Duchess of Mazarine’s Case; which is also
considered, Astell responded as follows:

"Tis true, thro’ Want of Learning, and of that Supe-
rior Genius which Men as Men lay claim to, she [Astell]
was ignorant of the Natural Inferiority of our Sex, which
our Masters lay down as a Self-Evident and Fundamental
Truth. She saw nothing in the Reason of Things, to make
this either a Principle or a Conclusion, but much to the
contrary; it being Sedition at least, if not Treason to as-
sert it in this Reign.

For if by the Natural Superiority of their Sex, they
mean that every Man is by Nature superior to every Wo-
man, which is the obvious meaning, and that which must
be stuck to if they would speak Sense, it woud be a Sin
in any Woman to have Dominion over any Man, and the
greatest Queen ought not to command but to obey her
Footman, because no Municipal Laws can supersede or
change the Law of Nature; so that if the Dominion of the
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Men be such, the Salique Law,® as unjust as English Men
have ever thought it, ought to take place over all the Earth,
and the most glorious Reigns in the English, Danish, Casti-
lian, and other Annals, were wicked Violations of the Law
of Nature!

If they mean that some Men are superior to some Wo-
men this is no great Discovery; had they turnd the Tables
they might have seen that some Women are Superior to some
Men. Or had they been pleased to remember their Oaths
of Allegiance and Supremacy, they might have known that
One Woman is superior to A/l the Men in these Nations, or
else they have sworn to very little purpose.3 And it must
not be supposd, that their Reason and Religion woud suf-
fer them to take Oaths, contrary to the Laws of Nature and
Reason of things.4

We can symbolize the different interpretations Astell offers of Nicholls’
claim that men are superior to women: He either meant that every man
is superior to every woman, i.e.,

V(M (x) = Vy(W(y) = S(x.)))
or that some men are superior to some women,

(M (x) A (W () A S(x,9)).
The latter is true, but so is

B (W (3) A Fx(M(x) A S (3. x))).

(some women are superior to some men), so that would be “no great
discovery.” In fact, since the Queen is superior to all her subjects, it’s
even true that some woman is superior to every man, i.e.,

Ay(W (y) AVx(M(x) — S(y, x))).

But this is incompatible with the “obvious meaning” of Nicholls’ claim,
i.e., the first reading. So what Nicholls claims amounts to treason
against the Queen!

*The Salique law was the common law of France which prohibited the crown
be passed on to female heirs.

3In 1706, England was ruled by Queen Anne.

4Mary Astell, Reflections upon Marriage, 1706 Preface, iii-iv, and Mary As-
tell, Political Writings, ed. Patricia Springborg, Cambridge University Press,
1996, g—10.
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Exercicios

A. Using this symbolization key:

domain: all animals

A(x): x is an alligator
M(x): x is @ monkey
R(x): x is a reptile
Z(x): « lives at the zoo
L(x,9): + loves ¥

a: Amos

b: Bouncer

¢: Cleo

symbolize each of the following sentences in FOL:

o =

N oo w

If Cleo loves Bouncer, then Bouncer is a monkey.

If both Bouncer and Cleo are alligators, then Amos loves them
both.

Cleo loves a reptile.

Bouncer loves all the monkeys that live at the zoo.

All the monkeys that Amos loves love him back.

Every monkey that Cleo loves is also loved by Amos.

There is a monkey that loves Bouncer, but sadly Bouncer does
not reciprocate this love.

B. Using the following symbolization key:

domain: all animals
D(x): x is a dog
S(x): x likes samurai movies
L(x,y): x is larger than y

r: Rave
h: Shane
d: Daisy

symbolize the following sentences in FOL:

ISE Al o S o

Rave is a dog who likes samurai movies.

Rave, Shane, and Daisy are all dogs.

Shane is larger than Rave, and Daisy is larger than Shane.
All dogs like samurai movies.

Only dogs like samurai movies.

There is a dog that is larger than Shane.
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7. If there is a dog larger than Daisy, then there is a dog larger than
Shane.
8. No animal that likes samurai movies is larger than Shane.
9. No dog is larger than Daisy.
10. Any animal that dislikes samurai movies is larger than Rave.
11. There is an animal that is between Rave and Shane in size.
12. There is no dog that is between Rave and Shane in size.
13. No dog is larger than itself.
14. Every dog is larger than some dog.
15. There is an animal that is smaller than every dog.
16. If there is an animal that is larger than any dog, then that animal
does not like samurai movies.

C. Using the symbolization key given, symbolize each English-language
sentence into FOL.

domain: candies

C(x): « has chocolate in it.
M(x): » has marzipan in it.
S(x): x has sugar in it.
T (x): Boris has tried X
B(x,y): x is better than 5

Boris has never tried any candy.

Marzipan is always made with sugar.

Some candy is sugarfree.

The very best candy is chocolate.

No candy is better than itself.

Boris has never tried sugar-free chocolate.

Boris has tried marzipan and chocolate, but never together.
Any candy with chocolate is better than any candy without it.
Any candy with chocolate and marzipan is better than any candy
that lacks both.

© XN o ® b

D. Using the following symbolization key:

domain: people and dishes at a potluck

R(x): x has run out.

T(x): « is on the table.

F(x): x 1is food.

P(x): x s a person.
L(x,y): « likes )

e: Eli
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f: Francesca
g: the guacamole

symbolize the following English sentences in FOL:

© PO o ® P

All the food is on the table.

If the guacamole has not run out, then it is on the table.
Everyone likes the guacamole.

If anyone likes the guacamole, then Eli does.

Francesca only likes the dishes that have run out.

Francesca likes no one, and no one likes Francesca.

Eli likes anyone who likes the guacamole.

Eli likes anyone who likes the people that he likes.

If there is a person on the table already, then all of the food must
have run out.

E. Using the following symbolization key:

domain: people

D(x): » dances ballet.
F(x): « is female.
M(x): » is male.
C(x, p): . is a child of 5
S(x,9): x is a sibling of 5
e: Elmer
j: Jane
p: Patrick

symbolize the following sentences in FOL:

[
(S

CL XN T2 M

All of Patrick’s children are ballet dancers.
Jane is Patrick’s daughter.

Patrick has a daughter.

Jane is an only child.

All of Patrick’s sons dance ballet.

Patrick has no sons.

Jane is Elmer’s niece.

Patrick is Elmer’s brother.

Patrick’s brothers have no children.

Jane is an aunt.

. Everyone who dances ballet has a brother who also dances ballet.

Every woman who dances ballet is the child of someone who
dances ballet.
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Identidade

Consider this sentence:
1. Pavel owes money to everyone

Let the domain be people; this will allow us to symbolize ‘everyone’ as
a universal quantifier. Offering the symbolization key:

O(x,y): x Owes money to ¥
p: Pavel

we can symbolize sentence 1 by ‘Vx O(p, x)’. But this has a (perhaps)

odd consequence. It requires that Pavel owes money to every member

of the domain (whatever the domain may be). The domain certainly

includes Pavel. So this entails that Pavel owes money to himself.
Perhaps we meant to say:

2. Pavel owes money to everyone else
3. Pavel owes money to everyone other than Pavel
4. Pavel owes money to everyone except Pavel himself

but we do not know how to deal with the italicised words yet. The
solution is to add another symbol to FOL.

24.1 Adding identity

The symbol ‘=" is a two-place predicate. Since it is to have a special
meaning, we will write it a bit differently: we put it between two terms,
rather than out front. And it does have a very particular meaning. We
always adopt the following symbolization key:

192
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x =y x is identical to ¥

This does not mean merely that the objects in question are indistin-
guishable, or that all of the same things are true of them. Rather, it
means that the objects in question are the very same object.

Now suppose we want to symbolize this sentence:

5. Pavel is Mister Checkov.
Let us add to our symbolization key:
¢: Mister Checkov

Now sentence 5 can be symbolized as ‘p = ¢’. This means that the
names ‘p’ and ‘¢’ both name the same thing.

We can also now deal with sentences 2—4. All of these sentences
can be paraphrased as ‘Everyone who is not Pavel is owed money by
Pavel’. Paraphrasing some more, we get: ‘For all x, if x is not Pavel,
then x is owed money by Pavel’. Now that we are armed with our new
identity symbol, we can symbolize this as ‘Vx(—x = p — O0(p, x))’.

This last sentence contains the formula ‘-x = p’. That might look
a bit strange, because the symbol that comes immediately after the ‘=’
is a variable, rather than a predicate, but this is not a problem. We are
simply negating the entire formula, ‘x = p’.

In addition to sentences that use the word ‘else’, ‘other than’ and
‘except’, identity will be helpful when symbolizing some sentences that
contain the words ‘besides’ and ‘only.” Consider these examples:

6. No one besides Pavel owes money to Hikaru.
7. Only Pavel owes Hikaru money.

Let ‘4’ name Hikaru. Sentence 6 can be paraphrased as, ‘No one who is
not Pavel owes money to Hikaru’. This can be symbolized by ‘-3x(—x =
p A O(x, k). Equally, sentence 6 can be paraphrased as ‘for all x, if x
owes money to Hikaru, then x is Pavel’. It can then be symbolized as
Vx(0(x,h) — x = p).

Sentence 7 can be treated similarly, but there is one subtlety here.
Do either sentence 6 or 7 entail that Pavel himself owes money to Hi-
karu?

24.2 There are at least...

We can also use identity to say how many things there are of a particular
kind. For example, consider these sentences:



194 CAPITULO 24. IDENTIDADE

8. There is at least one apple
9. There are at least two apples
10. There are at least three apples

We will use the symbolization key:
A(x): x is an apple

Sentence 8 does not require identity. It can be adequately symbolized
by ‘3x A(x)’: There is an apple; perhaps many, but at least one.

It might be tempting to also symbolize sentence g without identity.
Yet consider the sentence ‘Ix3y(A(x) A A(y))’. Roughly, this says that
there is some apple x in the domain and some apple y in the domain.
Since nothing precludes these from being one and the same apple, this
would be true even if there were only one apple. In order to make sure
that we are dealing with different apples, we need an identity predicate.
Sentence g needs to say that the two apples that exist are not identical,
so it can be symbolized by ‘Ix3y((A(x) A A(p)) A ~x = y)’.

Sentence 10 requires talking about three different apples. Now we
need three existential quantifiers, and we need to make sure that each
will pick out something different:

AxFy3z[((A(x) ANAP) AA) A ((mx =y Ay =2) A—x = 2)].

Note that it is not enough to use ‘-x = y A =y = 2’ to symbolize ‘x, y,
and z are all different.” For that would be true if x and y were different,
but x = z. In general, to say that x1, ..., x, are all different, we must
have a conjunction of —x; = x; for every different pair 7 and j.

24.3 There are at most...

Now consider these sentences:

11. There is at most one apple
12. There are at most two apples

Sentence 11 can be paraphrased as, ‘It is not the case that there are at
least two apples’. This is just the negation of sentence g:

—3x3y[(A(x) A A(p)) A —x = y]

But sentence 11 can also be approached in another way. It means that
if you pick out an object and it’s an apple, and then you pick out an
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object and it’s also an apple, you must have picked out the same object
both times. With this in mind, it can be symbolized by

VaVyp[(A(x) A A(y) — x = ]

The two sentences will turn out to be logically equivalent.

In a similar way, sentence 12 can be approached in two equivalent
ways. It can be paraphrased as, ‘It is not the case that there are three
or more distinct apples’, so we can offer:

—3xAyF2(A(x) NAWG)NA()A X =y Ay =2 A-x =2)

Alternatively we can read it as saying that if you pick out an apple, and
an apple, and an apple, then you will have picked out (at least) one of
these objects more than once. Thus:

Va¥yVz[(A(x) A A(p) A A(2) > (x=yVax=zVy=2z)]

24.4 There are exactly...

We can now consider precise statements, like:

13. There is exactly one apple.
14. There are exactly two apples.
15. There are exactly three apples.

Sentence 13 can be paraphrased as, ‘There is at least one apple and
there is at most one apple’. This is just the conjunction of sentence 8
and sentence 11. So we can offer:

FxA(x) AVaVy[(Ax) A Ap)) = x = ]

But it is perhaps more straightforward to paraphrase sentence 13 as,
“There is a thing x which is an apple, and everything which is an apple
is just x itself’. Thought of in this way, we offer:

3x[A(x) A VY(AQ) — x = )]

Similarly, sentence 14 may be paraphrased as, ‘“There are at least two
apples, and there are at most two apples’. Thus we could offer

FxTy((Ax) A AD)) A=x = 9) A
VaVyVz[(A(x) A AQ) A A=) = (x =y Vx = 2)Vy = 2)]
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More efficiently, though, we can paraphrase it as ‘There are at least two
different apples, and every apple is one of those two apples’. Then we
offer:

EIxEIy[((A(x) NAG)A—x =) AVz(A(z) 5 (x =2V y= z)]

Finally, consider these sentence:

16. There are exactly two things
17. There are exactly two objects

It might be tempting to add a predicate to our symbolization key, to
symbolize the English predicate ¢ is a thing’ or ¢ is an object’,
but this is unnecessary. Words like ‘thing’ and ‘object’ do not sort wheat
from chaff: they apply trivially to everything, which is to say, they apply
trivially to every thing. So we can symbolize either sentence with either
of the following:

AxFy-x =y A-TIxFyFz((~x =y Ay =2) Ax = 2)
Exﬁy[—'x =yAVz(x=2Vy= z)]

Exercicios

A. Explain why:

e ‘AxVy(A(y) & x =) is a good symbolization of ‘there is exactly
one apple’.

. ‘EIxEIy[—'x =yAVz(A(z) & (x=2z2Vy = z))]’ is a good symboli-
zation of ‘there are exactly two apples’.



Descrigoes

definidas

Consider sentences like:

1. Nick is the traitor.
2. The traitor went to Cambridge.
3. The traitor is the deputy

These are definite descriptions: they are meant to pick out a unique
object. They should be contrasted with indefinite descriptions, such as
‘Nick is a traitor’. They should equally be contrasted with generics, such
as ‘The whale is a mammal’ (it’s inappropriate to ask which whale). The
question we face is: how should we deal with definite descriptions in
FOL?

25.1 Treating definite descriptions as terms

One option would be to introduce new names whenever we come across
a definite description. This is probably not a great idea. We know that
the traitor—whoever it is—is indeed a traitor. We want to preserve that
information in our symbolization.

A second option would be to use a new definite description opera-
tor, such as ’. The idea would be to symbolize ‘the F’ as ‘ux F(x)’; or
to symbolize ‘the G’ as ‘2x G(x)’, etc. Expression of the form 1x d(x)

197
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would then behave like names. If we followed this path, then using the
following symbolization key

domain: people

T (x): « is a traitor

D(x): x is a deputy

C(x): x went to Cambridge
n: Nick

we could symbolize sentence 1 with ‘z = 1x T'(x)’, sentence 2 with
‘C(1x T(x)), and sentence 3 with “1x 7'(x) = 1x D(x)’.

However, it would be nice if we didn’t have to add a new symbol to
FOL. And indeed, we might be able to make do without one.

25.2 Russell’s analysis

Bertrand Russell offered an analysis of definite descriptions. Very brie-
fly put, he observed that, when we say ‘the F” in the context of a definite
description, our aim is to pick out the one and only thing that is F (in
the appropriate context). Thus Russell analysed the notion of a definite
description as follows:*

the F' is G iff there is at least one F, and
there is at most one F, and

every F'is G

Note a very important feature of this analysis: ‘the’ does not appear on the
right-side of the equivalence. Russell is aiming to provide an understanding
of definite descriptions in terms that do not presuppose them.

Now, one might worry that we can say ‘the table is brown’ without
implying that there is one and only one table in the universe. But this is
not (yet) a fantastic counterexample to Russell’s analysis. The domain
of discourse is likely to be restricted by context (e.g. to objects in my
line of sight).

If we accept Russell’s analysis of definite descriptions, then we can
symbolize sentences of the form ‘the F is G’ using our strategy for
numerical quantification in FOL. After all, we can deal with the three

1Bertrand Russell, ‘On Denoting’, 1905, Mind 14, pp. 479—93; also Russell,
Introduction to Mathematical Philosophy, 1919, London: Allen and Unwin, ch. 16.
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conjuncts on the right-hand side of Russell’s analysis as follows:
AxF(x) AVXVY(F(x) A F(y)) = x =9) AVx(F(x) = G(x))

In fact, we could express the same point rather more crisply, by recog-
nizing that the first two conjuncts just amount to the claim that there
is exactly one F, and that the last conjunct tells us that that object is F.
So, equivalently, we could offer:

Ex[(F(x) AVY(F(@) = x=y)) A G(x)]

Using these sorts of techniques, we can now symbolize sentences 1-3
without using any new-fangled fancy operator, such as ‘7.

Sentence 1 is exactly like the examples we have just considered. So
we would symbolize it by

x|T(x) AVY(T(y) = x=y) Ax=n].
Sentence 2 poses no problems either:

Elx[T(x) AVY(T(y) = x =) A C(x)].

Sentence 3 is a little trickier, because it links two definite descriptions.
But, deploying Russell’s analysis, it can be paraphrased by ‘there is
exactly one traitor, x, and there is exactly one deputy, y, and x = y’. So
we can symbolize it by:

IxTy([T(x) AV2(T(2) > x = 2)| A
[D() AV2(D(z) = y = 2)| Ax =)

Note that we have made sure that the formula ‘¢ = y’ falls within the
scope of both quantifiers!

25.3 Empty definite descriptions

One of the nice features of Russell’s analysis is that it allows us to handle
empty definite descriptions neatly.

France has no king at present. Now, if we were to introduce a
name, ‘k’, to name the present King of France, then everything would
go wrong: remember from §21 that a name must always pick out some
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object in the domain, and whatever we choose as our domain, it will
contain no present kings of France.

Russell’s analysis neatly avoids this problem. Russell tells us to treat
definite descriptions using predicates and quantifiers, instead of names.
Since predicates can be empty (see §22), this means that no difficulty
now arises when the definite description is empty.

Indeed, Russell’s analysis helpfully highlights two ways to go wrong
in a claim involving a definite description. To adapt an example from
Stephen Neale (1990),* suppose Alex claims:

4. I am dating the present king of France.
Using the following symbolization key:

a: Alex
K(x): x is a present king of France
D(x, y): x is dating ¥

Sentence 4 would be symbolized by ‘Ix(Vy(K(y) & x = y) A D(a, x))’.
Now, this can be false in (at least) two ways, corresponding to these
two different sentences:

5. There is no one who is both the present King of France and such
that he and Alex are dating.

6. There is a unique present King of France, but Alex is not dating
him.

Sentence 5 might be paraphrased by ‘It is not the case that: the present
King of France and Alex are dating’. It will then be symbolized by
‘—EIx[(K(x) AYY(K(y) = x = y)) A D(a, x)]’. We might call this outer
negation, since the negation governs the entire sentence. Note that it
will be true if there is no present King of France.

Sentence 6 can be symbolized by ‘Fx((K(x) A Vy(K(y) = x =) A
—D(a, x))’. We might call this inner negation, since the negation occurs
within the scope of the definite description. Note that its truth requires
that there is a present King of France, albeit one who is not dating Alex.

25.4 The adequacy of Russell’s analysis

How good is Russell’s analysis of definite descriptions? This question
has generated a substantial philosophical literature, but we will restrict
ourselves to two observations.

2Neale, Descriptions, 1990, Cambridge: MIT Press.
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One worry focusses on Russell’s treatment of empty definite des-
criptions. If there are no Fs, then on Russell’s analysis, both ‘the F
is G’ is and ‘the F is non-G’ are false. P.F. Strawson suggested that
such sentences should not be regarded as false, exactly.3 Rather, they
involve presupposition failure, and need to be regarded as neither true
nor false.

If we agree with Strawson here, we will need to revise our logic.
For, in our logic, there are only two truth values (True and False), and
every sentence is assigned exactly one of these truth values.

But there is room to disagree with Strawson. Strawson is appealing
to some linguistic intuitions, but it is not clear that they are very robust.
For example: isn’t it just false, not ‘gappy’, that Tim is dating the present
King of France?

Keith Donnellan raised a second sort of worry, which (very roughly)
can be brought out by thinking about a case of mistaken identity.* Two
men stand in the corner: a very tall man drinking what looks like a gin
martini; and a very short man drinking what looks like a pint of water.
Seeing them, Malika says:

7. The gin-drinker is very tall!
Russell’s analysis will have us render Malika’s sentence as:

7’. There is exactly one gin-drinker [in the corner], and whoever is
a gin-drinker [in the corner] is very tall.

Now suppose that the very tall man is actually drinking water from a
martini glass; whereas the very short man is drinking a pint of (neat)
gin. By Russell’s analysis, Malika has said something false, but don’t
we want to say that Malika has said something frue?

Again, one might wonder how clear our intuitions are on this case.
We can all agree that Malika intended to pick out a particular man, and
say something true of him (that he was tall). On Russell’s analysis, she
actually picked out a different man (the short one), and consequently
said something false of him. But maybe advocates of Russell’s analysis
only need to explain why Malika’s intentions were frustrated, and so
why she said something false. This is easy enough to do: Malika said
something false because she had false beliefs about the men’s drinks;

3P.F. Strawson, ‘On Referring’, 1950, Mind 59, pp. 320-34.
4Keith Donnellan, ‘Reference and Definite Descriptions’, 1966, Philosophi-
cal Review 77, pp. 281-304.
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if Malika’s beliefs about the drinks had been true, then she would have
said something true.>

To say much more here would lead us into deep philosophical wa-
ters. That would be no bad thing, but for now it would distract us
from the immediate purpose of learning formal logic. So, for now, we
will stick with Russell’s analysis of definite descriptions, when it comes
to putting things into FOL. It is certainly the best that we can offer,
without significantly revising our logic, and it is quite defensible as an
analysis.

Exercicios

A. Using the following symbolization key:

domain: people

K(x): x knows the combination to the safe.
S(x): x is a spy.
V(x): x IS a vegetarian.
T (x,): x trusts 5
h: Hofthor
i: Ingmar

symbolize the following sentences in FOL:

1. Hofthor trusts a vegetarian.

2. Everyone who trusts Ingmar trusts a vegetarian.

3. Everyone who trusts Ingmar trusts someone who trusts a vegeta-
rian.

Only Ingmar knows the combination to the safe.

Ingmar trusts Hofthor, but no one else.

The person who knows the combination to the safe is a vegeta-
rian.

7. The person who knows the combination to the safe is not a spy.

ST

B. Using the following symbolization key:
domain: cards in a standard deck

B(x): x is black.

C(x): x is a club.

SInterested parties should read Saul Kripke, ‘Speaker Reference and Se-
mantic Reference’, 1977, in French et al (eds.), Contemporary Perspectives in the
Philosophy of Language, Minneapolis: University of Minnesota Press, pp. 6-27.
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D(x): » is a deuce.

J(x): x is a jack.

M(x): x is @ man with an axe.
O(x): x is one-eyed.

W(x): x is wild.

symbolize each sentence in FOL:

All clubs are black cards.

There are no wild cards.

There are at least two clubs.

There is more than one one-eyed jack.

There are at most two one-eyed jacks.

There are two black jacks.

There are four deuces.

The deuce of clubs is a black card.

One-eyed jacks and the man with the axe are wild.
If the deuce of clubs is wild, then there is exactly one wild card.
. The man with the axe is not a jack.

The deuce of clubs is not the man with the axe.

PCL XN T 0 M
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C. Using the following symbolization key:

domain: animals in the world

B(x): x is in Farmer Brown’s field.
H(x): x is a horse.

P(x): x is a Pegasus.

W(x): » has wings.

symbolize the following sentences in FOL:

There are at least three horses in the world.

There are at least three animals in the world.

There is more than one horse in Farmer Brown’s field.

There are three horses in Farmer Brown’s field.

There is a single winged creature in Farmer Brown’s field; any
other creatures in the field must be wingless.

6. The Pegasus is a winged horse.

7. The animal in Farmer Brown’s field is not a horse.

8. The horse in Farmer Brown’s field does not have wings.

A ol

D. In this chapter, we symbolized ‘Nick is the traitor’ by ‘Ix(7(x) A
Vy(T(y) = x = 9) A x = n)’. Two equally good symbolizations would
be:
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s T(n) AVY(T(y) = n=y)
s V(T () oy=mn)

Explain why these would be equally good symbolizations.



Sentencas da
LPO

We know how to represent English sentences in FOL. The time has
finally come to define the notion of a sentence of FOL.

26.1 Expressions
There are six kinds of symbols in FOL:

Predicates A, B.C,...,Z, or with subscripts, as needed:
A19 Bl, ZL AQ’ A259 j375a ...

Names a,b,¢,...,r, or with subscripts, as needed ay, booy, fi7, m3g, . . .

Variables s,¢,u,0,w,x,9 2, or with subscripts, as needed
X1, Y1, 21, X2, - - -

Connectives -, A, V, —, <
Brackets (,)

Quantifiers V,3
We define an EXPRESSION OF FOL as any string of symbols of FOL. Take

any of the symbols of FOL and write them down, in any order, and you
have an expression.

205
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26.2 Terms and formulas

In §6, we went straight from the statement of the vocabulary of TFL
to the definition of a sentence of TFL. In FOL, we will have to go via
an intermediary stage: via the notion of a FORMULA. The intuitive
idea is that a formula is any sentence, or anything which can be turned
into a sentence by adding quantifiers out front. But this will take some
unpacking.

We start by defining the notion of a term.

A TERM is any name or any variable.

So, here are some terms:

a, b, x, x1%9, 9, Y54, 2

Next we need to define atomic formulas.

1. Any sentence letter is an atomic formula.

2. If R is an n-place predicate and 41,49, ...,%, are terms,
then R(11, 19, ...,1,) is an atomic formula.

3. If ¢; and 19 are terms, then {1 = {9 is an atomic formula.

4. Nothing else is an atomic formula.

Note that we consider sentence letters also formulas of FOL, so
every sentence of TFL is also a formula of FOL.

The use of script letters here follows the conventions laid down in
§7. So, ‘R’ is not itself a predicate of FOL. Rather, it is a symbol of
our metalanguage (augmented English) that we use to talk about any
predicate of FOL. Similarly, ‘¢;’ is not a term of FOL, but a symbol of
the metalanguage that we can use to talk about any term of FOL. So,
where ‘F’ is a one-place predicate, ‘G’ is a three-place predicate, and
‘8’ is a six-place predicate, here are some atomic formulas:

D F(a)
x=a G(x,a,9)
a= G(a,a,a)

F(x) S(x1, %9, a, b, y, x1)
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Once we know what atomic formulas are, we can offer recursion clauses
to define arbitrary formulas. The first few clauses are exactly the same
as for TFL.

1. Every atomic formula is a formula.

o. If of is a formula, then -9 is a formula.

If o and & are formulas, then (s A %) is a formula.
If o and & are formulas, then (o V %) is a formula.
If o and 9 are formulas, then (4 — 98) is a formula.

If o and 9 are formulas, then (o < %) is a formula.

U LIS

If o is a formula and « is a variable, then Vax of is a
formula.

8. If o is a formula and « is a variable, then Jx o is a
formula.

9. Nothing else is a formula.

So, assuming again that ‘F’ is a one-place predicate, ‘G’ is a three-
place predicate and ‘S’ is a six place-predicate, here are some formulas
you can build this way:

F(x)
G(a,y,2)
NVES YR
(G(a,y,2) = S, 2.y, a9, %))
Vz(G(a,y, z) = SOy, 2,9, a,, %))
F(x) AV2(G(a,y,2) = S, 2,9, a9, %))
Fy(F(x) AV2(G(a, y,z) = S(p, 2,3, a3, x)))
Vax3y(F(x) AVz(G(a,p,z) = SO, 2,9, a, 9, x)))

We can now give a formal definition of scope, which incorporates
the definition of the scope of a quantifier. Here we follow the case of
TFL, though we note that a logical operator can be either a connective
or a quantifier:
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The MAIN LOGICAL OPERATOR in a formula is the operator that
was introduced last, when that formula was constructed using
the recursion rules.

The scopE of a logical operator in a formula is the subformula
for which that operator is the main logical operator.

So we can graphically illustrate the scope of the quantifiers in the
preceding example thus:

scope of ‘Vx’

scope of 3y’

scope of ‘Vz’

Vxy(F(x) & V2(G(a, p,z) = SO, 2,9, a, 9, x)))

26.3 Sentences

Recall that we are largely concerned in logic with assertoric senten-
ces: sentences that can be either true or false. Many formulas are not
sentences. Consider the following symbolization key:

domain: people
L(x,y): x loves y
b: Boris

Consider the atomic formula ‘L(z, z)’. All atomic formula are formulas,
so ‘L(z, z)’ is a formula, but can it be true or false? You might think that
it will be true just in case the person named by ‘2’ loves themself, in
the same way that ‘L(b, 5)’ is true just in case Boris (the person named
by ‘0’) loves himself. However, 2’ is a variable, and does not name anyone
or any thing.

Of course, if we put an existential quantifier out front, obtaining
‘3zL(z, z)’, then this would be true iff someone loves themself. Equally,
if we wrote ‘VzL(z, z)’, this would be true iff everyone loves themself.
The point is that we need a quantifier to tell us how to deal with a
variable.

Let’s make this idea precise.
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A BOUND VARIABLE is an occurrence of a variable « that is within
the scope of either V& or 3.

A FREE VARIABLE is any occurrence of a variable that is not
bound.

For example, consider the formula
Vx(E(x) vV D(y)) — Jz2(E(x) — L(z, x))

The scope of the universal quantifier ‘Vx’ is ‘Vx(E(x) V D(y))’, so the

first ‘x’ is bound by the universal quantifier. However, the second and

third occurrence of ‘x’ are free. Equally, the ‘)’ is free. The scope of

the existential quantifier ‘32’ is ‘(E(x) — L(z, x))’, so ‘2’ is bound.
Finally we can say the following.

A SENTENCE of FOL is any formula of FOL that contains no free
variables.

26.4 Bracketing conventions

We will adopt the same notational conventions governing brackets that
we did for TFL (see §6 and §10.3.)

First, we may omit the outermost brackets of a formula.

Second, we may use square brackets, ‘[ and I, in place of brackets
to increase the readability of formulas.

Exercicios

A. Identify which variables are bound and which are free.

Ax L(x, y) AVy L(y, x)

Vx A(x) A B(x)

Vx(A(x) A B(x)) A Vy(C(x) A D(y))
Vady[R(x,y) = (J(2) A K(x))] V R(y, x)
Vx1(M(x2) & L(xg, x1)) A Ixg L(x3, x2)

G0 oM
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CAPITULO 27

Extensionalidade

Recall that TFL is a truth-functional language. Its connectives are all
truth-functional, and al/ that we can do with TFL is key sentences to
particular truth values. We can do this directly. For example, we might
stipulate that the TFL sentence ‘P’ is to be true. Alternatively, we can
do this indirectly, offering a symbolization key, e.g.:

P: Big Ben is in London
Now recall from §g that this should be taken to mean:

e The TFL sentence ‘P’ is to take the same truth value as the En-
glish sentence ‘Big Ben is in London’ (whatever that truth value
may be)

The point that we emphasized is that TFL cannot handle differences in
meaning that go beyond mere differences in truth value.

27.1  Symbolizing versus translating

FOL has some similar limitations, but it goes beyond mere truth va-
lues, since it enables us to split up sentences into terms, predicates and
quantifier expressions. This enables us to consider what is {rue of some
particular object, or of some or all objects. But we can do no more than
that.

When we provide a symbolization key for some FOL predicates,
such as:

C(x): x teaches Logic III in Calgary

211
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we do not carry the meaning of the English predicate across into our
FOL predicate. We are simply stipulating something like the following:

e ‘C(x) and * x teaches Logic III in Calgary’ are to be ¢rue of
exactly the same things.

So, in particular:

e ‘C(x) is to be true of all and only those things which teach Logic
III in Calgary (whatever those things might be).

This is an indirect stipulation. Alternatively, we can directly stipulate
which objects a predicate should be true of. For example, we can stipu-
late that ‘C(x)’ is to be true of Richard Zach, and Richard Zach alone.
As it happens, this direct stipulation would have the same effect as the
indirect stipulation. Note, however, that the English predicates ¢

is Richard Zach’ and ° teaches Logic III in Calgary’ have very
different meanings!

The point is that FOL does not give us any resources for dealing
with nuances of meaning. When we interpret FOL, all we are conside-
ring is what the predicates are true of, regardless of whether we specify
these things directly or indirectly. The things a predicate is true of are
known as the EXTENSION of that predicate. We say that FOL is an EX-
TENSIONAL LANGUAGE because FOL does not represent differences of
meaning between predicates that have the same extension.

For this reason, we say only that FOL sentences symbolize English
sentences. It is doubtful that we are translating English into FOL, as
translations should preserve meanings, and not just extensions.

27.2 A word on extensions

We can stipulate directly what predicates are to be true of, so it is
worth noting that our stipulations can be as arbitrary as we like. For
example, we could stipulate that ‘H(x)’ should be true of, and only of,
the following objects:

Justin Trudeau
the number 7
every top-F key on every piano ever made

Now, the objects that we have listed have nothing particularly in com-
mon. But this doesn’t matter. Logic doesn’t care about what strikes us
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mere humans as ‘natural’ or ‘similar’. Armed with this interpretation
of ‘H(x)’, suppose we now add to our symbolization key:

j: Justin Trudeau
a: Angela Merkel
p: the number 7

Then ‘H(j) and ‘H(p)’ will both be true, on this interpretation, but
‘H(a)’ will be false, since Angela Merkel was not among the stipulated
objects.

27.3 Many-place predicates

All of this is quite easy to understand when it comes to one-place predi-
cates, but it gets messier when we consider two-place predicates. Con-
sider a symbolization key like:

L(x,y): x loves »

Given what we said above, this symbolization key should be read as
saying:

e ‘L(x,9) and ° « loves , are to be true of exactly the
same things

So, in particular:
* ‘L(x, ) is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—
famously—is not always reciprocated. (Note that ‘x’ and ‘y’ on the
right here are symbols of augmented English, and that they are being
used. By contrast, ‘x’ and ‘y’ in ‘L(x, y)’ are symbols of FOL, and they
are being mentioned.)

That is an indirect stipulation. What about a direct stipulation?
This is slightly harder. If we simply list objects that fall under ‘L(x, y)’,
we will not know whether they are the lover or the beloved (or both).
We have to find a way to include the order in our explicit stipulation.

To do this, we can specify that two-place predicates are true of pairs
of objects, where the order of the pair is important. Thus we might
stipulate that ‘B(x, y)’ is to be true of, and only of, the following pairs
of objects:
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(Lenin, Marx)
(de Beauvoir, Sartre)
(Sartre, de Beauvoir)

Here the angle-brackets keep us informed concerning order. Suppose
we now add the following stipulations:

[: Lenin
m: Marx
b: de Beauvoir
r: Sartre

Then ‘B(/,m)’ will be true, since (Lenin, Marx) was in our explicit
list, but ‘B(m, [)’ will be false, since (Marx, Lenin) was not in our list.
However, both ‘B(b,r)’ and ‘B(r, b))’ will be true, since both (de Beau-
voir, Sartre) and (Sartre, de Beauvoir) are in our explicit list.

To make these ideas more precise, we would need to develop some
set theory. That would give us some precise tools for dealing with exten-
sions and with ordered pairs (and ordered triples, etc.). However, set
theory is not covered in this book, so we will leave these ideas at an
imprecise level. Nevertheless, the general idea should be clear.

27.4 Semantics for identity

Identity is a special predicate of FOL. We write it a bit differently than
other two-place predicates: ‘x = 3’ instead of ‘I(x,y)’ (for example).
More important, though, its interpretation is fixed, once and for all.

If two names refer to the same object, then swapping one name
for another will not change the truth value of any sentence. So, in
particular, if ‘e’ and ‘4’ name the same object, then all of the following
will be true:

A(a) < A(b)
B(a) & B(b)
R(a,a) & R(b,b)
R(a,a) < R(a,b)
R(c,a) & R(c,b)
Vx R(x,a) < VYx R(x,b)

Some philosophers have believed the reverse of this claim. That is, they
have believed that when exactly the same sentences (not containing ‘=’)
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are true of two objects, then they are really just one and the same object
after all. This is a highly controversial philosophical claim (sometimes
called the identity of indiscernibles) and our logic will not subscribe to
it; we allow that exactly the same things might be true of two distinct
objects.

To bring this out, consider the following interpretation:

domain: P.D. Magnus, Tim Button
a: P.D. Magnus
b: Tim Button
¢ For every primitive predicate we care to consider, that predicate
is true of nothing.

Suppose ‘4’ is a one-place predicate; then ‘4A(a)’ is false and ‘A(d)’ is
false, so ‘A(a) <> A(b) is true. Similarly, if ‘R’ is a two-place predicate,
then ‘R(a, a)’ is false and ‘R(a, b)’ is false, so that ‘R(a, a) < R(a, b) is
true. And so it goes: every atomic sentence not involving ‘=’ is false,
so every biconditional linking such sentences is true. For all that, Tim
Button and P.D. Magnus are two distinct people, not one and the same!

27.5 Interpretations

We defined a vaLuarioN in TFL as any assignment of truth and falsity
to sentence letters. In FOL, we are going to define an INTERPRETATION
as consisting of four things:

o the specification of a domain

 for each sentence letter we care to consider, a truth value

* for each name that we care to consider, an assignment of exactly
one object within the domain

o for each predicate that we care to consider—other than ‘="—a
specification of what things (in what order) the predicate is to be
true of

The symbolization keys that we considered in Part V consequently give
us one very convenient way to present an interpretation. We will conti-
nue to use them throughout this chapter. However, it is sometimes also
convenient to present an interpretation diagrammatically.

Suppose we want to consider just a single two-place predicate,
‘R(x,y). Then we can represent it just by drawing an arrow between
two objects, and stipulate that ‘R(x, y)’ is to hold of x and y just in case
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there is an arrow running from x to y in our diagram. As an example,

we might offer:
1 2
4 3

This would be suitable to characterize an interpretation whose domain
is the first four positive whole numbers, and which interprets ‘R(x,y)’
as being true of and only of:

|

—

(1, 2),(2,3), (3, 4> {4 1), (1, 3)
Equally we might offer:

Co .

t——37)

for an interpretation with the same domain, which interprets ‘R(x, y)’
as being true of and only of:

(1, 3), (3, 1), (3, 4), (1, 1), (3, 3)

If we wanted, we could make our diagrams more complex. For example,
we could add names as labels for particular objects. Equally, to sym-
bolize the extension of a one-place predicate, we might simply draw
a ring around some particular objects and stipulate that the thus en-
circled objects (and only them) are to fall under the predicate ‘H(x)’,

say.
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A verdade na

We know what interpretations are. Since, among other things, they tell
us which predicates are true of which objects, they will provide us with
an account of the truth of atomic sentences. However, we must also
present a detailed account of what it is for an arbitrary FOL sentence
to be true or false in an interpretation.

We know from 8§26 that there are three kinds of sentence in FOL:

e atomic sentences
* sentences whose main logical operator is a sentential connective
* sentences whose main logical operator is a quantifier

We need to explain truth for all three kinds of sentence.

We will provide a completely general explanation in this section.
However, to try to keep the explanation comprehensible, we will, at
several points, use the following interpretation:

domain: all people born before 2000CE
a: Aristotle

b: Beyoncé
P(x): x is a philosopher
R(x,y): x was born before 5

This will be our go-to example in what follows.
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28.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward. For
sentence letters, the interpretation specifies if it is true or false. The
sentence ‘P(a)’ should be true just in case ‘P(x)’ is true of ‘a’. Given our
go-to interpretation, this is true iff Aristotle is a philosopher. Aristotle
is a philosopher. So the sentence is true. Equally, ‘P (%)’ is false on our
go-to interpretation.

Likewise, on this interpretation, ‘R(a, )’ is true iff the object named
by ‘a’ was born before the object named by ‘4’. Well, Aristotle was born
before Beyoncé. So ‘R(a, b)’ is true. Equally, ‘R(a, a)’ is false: Aristotle
was not born before Aristotle.

Dealing with atomic sentences, then, is very intuitive. When R is
an n-place predicate and «1, @9, ..., @, are names,

R(@1, @9, ...,ay) is true in an interpretation iff
R is true of the objects named by @1, g, ..., @, in that inter-
pretation (considered in that order)

Recall, though, that there is a special kind of atomic sentence: two
names connected by an identity sign constitute an atomic sentence.
This kind of atomic sentence is also easy to handle. Where « and &
are any names,

< =G is true in an interpretation iff
<« and ¢ name the very same object in that interpretation

So in our go-to interpretation, ‘a = &’ is false, since Aristotle is
distinct from Beyoncé.

28.2 Sentential connectives

We saw in §26 that FOL sentences can be built up from simpler ones
using the truth-functional connectives that were familiar from TFL. The
rules governing these truth-functional connectives are exactly the same
as they were when we considered TFL. Here they are:
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o A R is true in an interpretation iff
both of is true and B is true in that interpretation

ol vV 9B is true in an interpretation iff
either o is true or 9 is true in that interpretation

—dl is true in an interpretation iff
ol is false in that interpretation

ol — 9B is true in an interpretation iff
either o is false or % is true in that interpretation

o < 9B is true in an interpretation iff
o has the same truth value as 9 in that interpretation

This presents the very same information as the characteristic truth
tables for the connectives; it just does so in a slightly different way.
Some examples will probably help to illustrate the idea. On our go-to
interpretation:

e ‘a=aAP(a) is true

* ‘R(a,b) A P(b) is false because, although ‘R(a, b)’ is true, ‘P(b)’
is false

e ‘a=10bV P(a) is true

o ‘mg = b is true

e ‘P(a) A ~(a = b A R(a,b)) is true, because ‘P(a)’ is true and
‘a = b’ is false

Make sure you understand these examples.

28.3 When the main logical operator is a
quantifier

The exciting innovation in FOL, though, is the use of guantifiers, but
expressing the truth conditions for quantified sentences is a bit more
fiddly than one might first expect.

Here is a naive first thought. We want to say that ‘Vx F(x)’ is true
iff ‘F(x)’ is true of everything in the domain. This should not be too
problematic: our interpretation will specify directly what ‘F(x)’ is true
of.

Unfortunately, this naive thought is not general enough. For exam-
ple, we want to be able to say that ‘Vx3y L(x, y)’ is true just in case
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‘Jy L(x, y) is true of everything in the domain. This is problematic,
since our interpretation does not directly specify what ‘Iy L(x, y)’ is to
be true of. Instead, whether or not this is true of something should
follow just from the interpretation of ‘L(x, y)’, the domain, and the me-
anings of the quantifiers.

So here is a second naive thought. We might try to say that
‘Vx3y L(x,y)’ is to be true in an interpretation iff 3y L(w,y) is true for
every name « that we have included in our interpretation. Similarly, we
might try to say that 3y L(w,y) is true just in case L(w, ) is true for
some name 6 that we have included in our interpretation.

Unfortunately, this is not right either. To see this, observe that
in our go-to interpretation, we have only given interpretations for two
names, ‘e’ and ‘4’, but the domain—all people born before the year
2000CE—contains many more than two people. We have no intention
of trying to name all of them!

So here is a third thought. (And this thought is not naive, but cor-
rect.) Although it is not the case that we have named everyone, each
person could have been given a name. So we should focus on this pos-
sibility of extending an interpretation by adding a new name. We will
offer a few examples of how this might work, centring on our go-to
interpretation, and we will then present the formal definition.

In our go-to interpretation, ‘3x R(b, x)’ should be true. After all,
in the domain, there is certainly someone who was born after Beyoncé.
Lady Gaga is one of those people. Indeed, if we were to extend our go-to
interpretation—temporarily, mind—by adding the name ‘¢’ to refer to
Lady Gaga, then ‘R(4, ¢)’ would be true on this extended interpretation.
This, surely, should suffice to make ‘Ix R(b, x)’ true on the original go-to
interpretation.

In our go-to interpretation, “Ix(P(x) A R(x, a))’ should also be true.
After all, in the domain, there is certainly someone who was both a
philosopher and born before Aristotle. Socrates is one such person. In-
deed, if we were to extend our go-to interpretation by letting a new
name, ‘¢’, denote Socrates, then ‘W(c) A R(c,a) would be true on
this extended interpretation. Again, this should surely suffice to make
‘Ax(P(x) A R(x, a))’ true on the original go-to interpretation.

In our go-to interpretation, ‘Vx3y R(x, y)’ should be false. After all,
consider the last person born in the year 1999. We don’t know who that
was, but if we were to extend our go-to interpretation by letting a new
name, ‘d’, denote that person, then we would not be able to find anyone
else in the domain to denote with some further new name, perhaps ‘¢’,
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in such a way that ‘R(d,¢)’ would be true. Indeed, no matter whom
we named with ‘¢’, ‘R(d, ¢)’ would be false. This observation is surely
sufficient to make ‘Jy R(d, y)’ false in our extended interpretation, which
in turn is surely sufficient to make ‘Vx3y R(x, )’ false on the original
go-to interpretation.

If you have understood these three examples, good. That’s what
matters. Strictly speaking, though, we still need to give a precise defini-
tion of the truth conditions for quantified sentences. The result, sadly,
is a bit ugly, and requires a few new definitions. Brace yourself!

Suppose that ¢f is a formula containing at least one occurrence of
the variable «, and that «x is free in 9. We will write this thus:

Suppose also that ¢ is a name. Then we will write:
A(...c...c...)

for the formula obtained by replacing every occurrence of « in o with
<. The resulting formula is called a SUBSTITUTION INSTANCE of Yo
and Jxd. Also, < is called the INSTANTIATING NAME. So:

dx(R(e, x) & F(x))
is a substitution instance of
VyAx(R(y, x) < F(x))

with the instantiating name ‘¢’ and instantiated variable ‘y’.

Our interpretation will include a specification of which names cor-
respond to which objects in the domain. Take any object in the domain,
say, d, and a name ¢ which is not already assigned by the interpreta-
tion. If our interpretation is I, then we can consider the interpretation
I[d/<c] which is just like I except it also assigns the name < to the ob-
ject d. Then we can say that d SATISFIES the formula (... ¢ ... x...)
in the interpretation I if, and only if, A(... ¢ ...<c...) is true in I[d/<c].
(If d satisfies (...« ... ...) we also say that A(. .. ... ...)is true

of d.)

The interpretation I[d /<] is just like the interpretation I except
it also assigns the name < to the object 4.

An object d SATISFIES (...« ... ...) in interpretation I iff
A(...c...c...)is true in I[d/<].
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So, for instance, Socrates satisfies the formula P(x) since P(c) is
true in the interpretation I[Socrates/c], i.e., the interpretation:

domain: all people born before 2000CE
a: Aristotle
b: Beyoncé
¢: Socrates
P(x): « is a philosopher
R(x,y): . was born before 5

Armed with this notation, the rough idea is as follows. The sen-
tence Vad(...x...a...) will be true in I iff, for any object 4 in the
domain, (... <...c...)is true in I[d/c], i.e.,, no matter what object
(in the domain) we name with ¢. In other words, Vadd(...x...x...)
is true iff every object in the domain satisfies A(...o ...« ...). Simi-
larly, the sentence 3acof will be true iff there is some object that satisifes
d(...ax...x...),le,d(...c...c...)true in I[d/c] for some object d.

Vad(...a...x...)is true in an interpretation iff
every object in the domain satisfies (... ... x...).

Joed(... ...« ...)is true in an interpretation iff
at least one object in the domain satisfies A(... ... x...).

To be clear: all this is doing is formalizing (very pedantically) the
intuitive idea expressed on the previous page. The result is a bit ugly,
and the final definition might look a bit opaque. Hopefully, though, the
spirit of the idea is clear.

Finally, let us note that the concept of an object satisfying a formula
with a free variable can also be extended to formulas with more than
one free variable. If we have a formula #(x, y) with two free variables
o« and y, then we can say that a pair of objects (a, ) satisfies o(x,y)
iff d(c,d) is true in the interpretation extended by two names ¢ and
<, where ¢ names a and d names b. So, for instance, (Socrates, Plato)
satisfies R(x, y) since R(¢, d) is true in the interpretation:

domain: all people born before 2000CE
a: Aristotle
b: Beyoncé
¢: Socrates
d: Plato
P(x): x is a philosopher
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R(x,9): » was born before ¥

For atomic formulas, the objects, pairs of objects, etc., that satisfy them
are exactly the extension of the predicate given in the interpretation.
But the notion of satisfaction also applies to non-atomic formulas, e.g.,
the formula P(x) A R(x, b) is satisfied by all philosophers born before
Beyoncé. It even applies to formulas involving quantifiers, e.g., P(x) A
-3y(P(y) A R(y, x)) is satisfied by all people who are philosophers and
for whom it is true that no philosopher was born before them—in other
words, it is true of the first philosopher.

Exercicios

A. Consider the following interpretation:

* The domain comprises only Corwin and Benedict
e ‘A(x) is to be true of both Corwin and Benedict

* ‘B(x) is to be true of Benedict only

e ‘N(x) is to be true of no one

e ‘¢’ is to refer to Corwin

Determine whether each of the following sentences is true or false in
that interpretation:

1. B(c)
2. A(c) & =N(c)
3. N(¢) = (4(e) v B(c))
4. Vx A(x)
5. Vx=B(x)
6. Jx(A(x) A B(x))
7. Ax(A(x) = N(x))
8. Vx(N(x)V =N(x))
9. dx B(x) — Vx A(x)
B.C

onsider the following interpretation:

* The domain comprises only Lemmy, Courtney and Eddy
* ‘G(x) is to be true of Lemmy, Courtney and Eddy.

* ‘H(x) is to be true of and only of Courtney

* ‘M(x) is to be true of and only of Lemmy and Eddy

* ‘¢’ is to refer to Courtney

* ‘¢’ is to refer to Eddy
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Determine whether each of the following sentences is true or false in
that interpretation:

[
=

12.
13.
14.
15.

PL XN ST @ b M

H(c)

H(e)

M(c)V M(e)

G(c) vV =G(c)

M(c) - G(c)

dx H(x)

Vx H(x)

Ax -M(x)

Ax(H(x) A G(x))
Ax(M(x) A G(x))
Vx(H(x) Vv M(x))
Ax H(x) A Jx M(x)
Vx(H(x) < —~M(x))
Ax G(x) A Ix-G(x)
VxIy(Gx) A H())

C. Following the diagram conventions introduced at the end of §27,
consider the following interpretation:

S

3 4 53

Determine whether each of the following sentences is true or false in
that interpretation:

=

CL XN ST @ b H

Ax R(x, x)

Vx R(x, x)

JxVy R(x, )

JxVy R(y, x)

VaxVyVz((R(x,y) A R(y, z)) = R(x, 2))
VaVyVz((R(x,y) A R(x, 2)) = R(y, 2))
JxVy —R(x, y)

Vx(Jy R(x,y) = Jy R(y, x))

Jx3y(—x = y A R(x,9) A R(y, %))
JxVy(R(x,9) & x =)
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11. 3xVy(R(p, x) & x =)
12. dxdy(—x =y A R(x,9) AVZ(R(2, %) & y = 2))
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Conceitos
semanticos

Offering a precise definition of truth in FOL was more than a little
fiddly, but now that we are done, we can define various central logical
notions. These will look very similar to the definitions we offered for
TFL. However, remember that they concern interpretations, rather than
valuations.

We will use the symbol ‘€’ for FOL much as we did for TFL. So:

A, A9, ..., A, EB

means that there is no interpretation in which all of g1, do, ..., o, are
true and in which € is false. Derivatively,

EdA

means that of is true in every interpretation.

The other logical notions also have corresponding definitions in
FOL:

> An FOL sentence o is a VALIDITY iff o is true in every interpre-
tation; i.e., F o.

> ol is a CONTRADICTION iff o is false in every interpretation; i.e.,
F-d.
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> i, o, ... d, .. 6 is vALID IN FOL iff there is no interpretation
in which all of the premises are true and the conclusion is false;
ie., s, ... 9, EG. It is INVALID IN FOL otherwise.

> Two FOL sentences o and 9% are EQUIVALENT iff they are true in
exactly the same interpretations as each other; i.e., both o £ &
and & E d.

> The FOL sentences $d1, o, ..., 9, are JOINTLY SATISFIABLE iff
there is some interpretation in which all of the sentences are true.
They are JOINTLY UNSATISFIABLE iff there is no such interpreta-
tion.
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Utilizando as
interpretacoes

30.1 Validities and contradictions

Suppose we want to show that “Ix A(x, x) — B(d)’ is not a validity. This
requires showing that the sentence is not true in every interpretation;
i.e., that it is false in some interpretation. If we can provide just one
interpretation in which the sentence is false, then we will have shown
that the sentence is not a validity.

In order for ‘dx A(x,x) — B(d) to be false, the antecedent
(‘3x A(x, x)’) must be true, and the consequent (‘B(d)’) must be false.
To construct such an interpretation, we start by specifying a domain.
Keeping the domain small makes it easier to specify what the predicates
will be true of, so we will start with a domain that has just one member.
For concreteness, let’s say it is the city of Paris.

domain: Paris

The name ‘d’ must refer to something in the domain, so we have no
option but:

d: Paris

Recall that we want ‘Jx A(x, x)’ to be true, so we want all members of
the domain to be paired with themselves in the extension of ‘4’. We
can just offer:

298
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A(x, y): x is identical with ¥

Now ‘A(d, d)’ is true, so it is surely true that ‘Ix A(x, x)’. Next, we want
‘B(d)’ to be false, so the referent of ‘4’ must not be in the extension of
‘B’. We might simply offer:

B(x): x is in Germany

Now we have an interpretation where ‘dx A(x, x)’ is true, but where
‘B(d) is false. So there is an interpretation where ‘Ix A(x, x) — B(d)’
is false. So ‘Ix A(x, x) — B(d)’ is not a validity.

We can just as easily show that ‘IxA(x, x) — B(d)’ is not a contra-
diction. We need only specify an interpretation in which ‘Ix4(x, x) —
B(d)’ is true; i.e., an interpretation in which either “Ix A(x, x)’ is false
or ‘B(d)’ is true. Here is one:

domain: Paris

d: Paris
A(x, y): « is identical with ¥
B(x): x is in France

This shows that there is an interpretation where ‘IxA(x, x) — B(d)’ is
true. So ‘Jx A(x, x) — B(d)’ is not a contradiction.

To show that o is not a validity, it suffices to find an interpreta-
tion where o is false.

To show that ¢f is not a contradiction, it suffices to find an in-
terpretation where ¢ is true.

30.2 Logical equivalence

Suppose we want to show that ‘Vx S(x)’ and ‘Ix S(x)’ are not logically
equivalent. We need to construct an interpretation in which the two
sentences have different truth values; we want one of them to be true
and the other to be false. We start by specifying a domain. Again,
we make the domain small so that we can specify extensions easily. In
this case, we will need at least two objects. (If we chose a domain with
only one member, the two sentences would end up with the same truth
value. In order to see why, try constructing some partial interpretations
with one-member domains.) For concreteness, let’s take:

domain: Ornette Coleman, Miles Davis
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We can make ‘3x §(x)’ true by including something in the extension of
‘8’, and we can make ‘Vx §(x) false by leaving something out of the
extension of ‘S’. For concreteness we will offer:

S(x): x plays saxophone

Now ‘Jx S(x)’ is true, because ‘S(x)’ is true of Ornette Coleman. Sligh-
tly more precisely, extend our interpretation by allowing ‘¢’ to name Or-
nette Coleman. ‘S(c)’ is true in this extended interpretation, so ‘Ix S(x)’
was true in the original interpretation. Similarly, ‘Vx S(x)’ is false, be-
cause ‘S(x)’ is false of Miles Davis. Slightly more precisely, extend our
interpretation by allowing ‘d’ to name Miles Davis, and ‘S(d)’ is false
in this extended interpretation, so ‘Vx S(x)’ was false in the original
interpretation. We have provided a counter-interpretation to the claim
that ‘Vx S(x)’ and ‘Ix §(x)’ are logically equivalent.

To show that / and % are not logically equivalent, it suffices to
find an interpretation where one is true and the other is false.

30.3 Validity, entailment and satisfiability

To test for validity, entailment, or satisfiability, we typically need to pro-
duce interpretations that determine the truth value of several sentences
simultaneously.

Consider the following argument in FOL:

Ax(G(x) » G(a)) .". Ax G(x) — G(a)

To show that this is invalid, we must make the premise true and the
conclusion false. The conclusion is a conditional, so to make it false,
the antecedent must be true and the consequent must be false. Clearly,
our domain must contain two objects. Let’s try:

domain: Karl Marx, Ludwig von Mises
G(x): » hated communism
a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘G(a)’ is plainly false
in this interpretation. But von Mises famously hated communism, so
‘Jx G(x)’ is true in this interpretation. Hence ‘Ix G(x) — G(a)’ is false,
as required.
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Does this interpretation make the premise true? Yes it does! Note
that ‘G(a) — G(a)’ is true. (Indeed, it is a validity.) But then certainly
‘Ax(G(x) — G(a))’ is true, so the premise is true, and the conclusion is
false, in this interpretation. The argument is therefore invalid.

In passing, note that we have also shown that ‘Ix(G(x) — G(a))
does not entail ‘Ix G(x) — G(a)’. Equally, we have shown that the
sentences ‘Ix(G(x) — G(a))’ and ‘~(3x G(x) — G(a)) are jointly satis-
fiable.

Let’s consider a second example. Consider:

Vx3y L(x,9) .. AyVx L(x, y)

Again, we want to show that this is invalid. To do this, we must make
the premises true and the conclusion false. Here is a suggestion:

domain: Canadian citizens currently in a domestic partnership with
another Canadian citizen
L(x,y): x is in a domestic partnership with ¥

The premise is clearly true on this interpretation. Anyone in the domain
is a Canadian citizen in a domestic partnership with some other Cana-
dian citizen. That other citizen will also, then, be in the domain. So
for everyone in the domain, there will be someone (else) in the domain
with whom they are in a domestic partnership. Hence ‘Vx3y L(x, y)’ is
true. However, the conclusion is clearly false, for that would require
that there is some single person who is in a domestic partnership with
everyone in the domain, and there is no such person, so the argument
is invalid. We observe immediately that the sentences ‘Vx3y L(x,y)’
and ‘~3yVx L(x,y) are jointly satisfiable and that ‘Vx3y L(x, y)’ does
not entail ‘IyVx L(x, y)’.

For our third example, we’ll mix things up a bit. In §27, we des-
cribed how we can present some interpretations using diagrams. For

example:
Cl —2

3

Using the conventions employed in §27, the domain of this interpreta-
tion is the first three positive whole numbers, and ‘R(x, y)’ is true of x
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and y just in case there is an arrow from x to y in our diagram. Here
are some sentences that the interpretation makes true:

o Vx3Ay R(y, x)

o ‘AxVy R(x,y) witness 1
o ‘AVy(R(p,x) & x =y) witness 1
e ‘AxAyTz((—y = 2 A R(x,9)) A R(z, %)) witness 2
e ‘AxVy-R(x,y) witness 3
e ‘Ix(Fy R(y, x) A =Ty R(x,9)) witness 3

This immediately shows that all of the preceding six sentences are join-
tly satisfiable. We can use this observation to generate invalid argu-
ments, e.g.:

Vx3y R(y, x), IxVy R(x, y) .". YaTy R(x, y)
JxVy R(x, y), IxVy-R(x,y) .". =IxIy3z(—y = 2 A (R(x, ) A R(z, x)))

and many more besides.

To show that sfy, Ao, ..., d, .". € is invalid, it suffices to find an

interpretation where all of oy, dy, ..., d, are true and where
@6 is false.

That same interpretation will show that oy, do, ..., o, do not
entail 6.

It will also show that o1, oy, ..., d,, =6 are jointly satisfiable.

When you provide an interpretation to refute a claim—to show
that a sentence is not a validity, say, or that an entailment fails—this
is sometimes called providing a counter-interpretation (or providing a
counter-model).

Exercicios

A. Show that each of the following is neither a validity nor a contra-
diction:

D(a) A D(b)

Ax T(x, k)

P(m) A =Vx P(x)

Vz J(z) & 3y J(y)

Vx(W (x, m,n) vV IyL(x, y))

AN ol S
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6.
7.

Fx(G(x) = Yy M(y))
Ax(x =hAx=1)

B. Show that the following pairs of sentences are not logically equiva-
lent.

C.

S© PN DU W P

1. J(a), K(a)

2. 3dx J(x), J(m)

3. Vx R(x,x), Ix R(x, x)

4. Ax P(x) — Q(c), x(P(x) — 0(c))

g- Va(P(x) = =0Q(x)), Ix(P(x) A =Q(x))
7
8
9
S

3x(P(x) A Q(x)), Ix(P(x) — Q(x))

- Vx(P(x) = Q(x)), Vx(P(x) A Q(x))
. Vx3y R(x, ), IxVy R(x,y)
. Vx3y R(x, ), Y23y R(y, x)

how that the following sentences are jointly satisfiable:

M(a),~N(a), P(a),—Q(a)

L(e,e), L(e, g). —~L(g. ¢), ~L(g, g)

—(M(a) A Ix A(x)), M(a) V F(a),Vx(F(x) = A(x))
M(a) Vv M(b), M(a) — Yx—M(x)

Vy G(»), Vx(G(x) — H(x)), Iy=1(y)

Ax(B(x) V A(x)), Vx-C(x), Vx[(A(x) A B(x)) — C(x)]
dx X (x), Ix Y (x), Va(X (x) & =Y (x))

Vx(P(x) V Q(x)), 3x=(Q(x) A P(x))

Fz(N(z) A O(z, 2)), VxVy(0O(x,y) — O(y, x))

=3xVy R(x, y), Vx3y R(x, y)

-R(a, a), Vx(x = a vV R(x, a))

VaVyVz[(x =y Vy=2)Vx=2z],Ixdy ~x =y
xI((Zx)ANZ() Ax=9),Z(d),d=e¢

D. Show that the following arguments are invalid:

[

PL XN T @ oM

Vx(A(x) — B(x)) .". 3x B(x)

Vx(R(x) — D(x)),YVx(R(x) — F(x)) .. 3x(D(x) A F(x))
Ax(P(x) — Q(x)) .. Ix P(x)
N(@)ANB)AN(c)..VxN(x)

R(d)e,Ax R(x,d) .. R(e,d)

Ax(E(x) A F(x)), 3x F(x) — Jx G(x) .". Ix(E(x) A G(x))
Vx O0(x,¢),Vx O(c,x) .. Vx O(x, x)

Ax(J(x) A K(x)), Ix-K(x), Ix= J(x) .". Ix(= ] (x) A =K (x))
L(a)b — Vx L(x,b),3x L(x,b) .". L(b,b)

Vx(D(x) = 3y T(y,x)) .. Iz y =z
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Raciocinando
sobre todas as
interpretagoes

31.1 Validities and contradictions

We can show that a sentence is not a validity just by providing one ca-
refully specified interpretation: an interpretation in which the sentence
is false. To show that something is a validity, on the other hand, it
would not be enough to construct ten, one hundred, or even a thou-
sand interpretations in which the sentence is true. A sentence is only a
validity if it is true in every interpretation, and there are infinitely many
interpretations. We need to reason about all of them, and we cannot
do this by dealing with them one by one!

Sometimes, we can reason about all interpretations fairly easily.
For example, we can offer a relatively simple argument that ‘R(a, a) V
-R(a, a) is a validity:

Any relevant interpretation will give ‘R(a, a)’ a truth va-
lue. If ‘R(a, @)’ is true in an interpretation, then ‘R(a, a) v
-R(a,a) is true in that interpretation. If ‘R(a,a) is
false in an interpretation, then —R(a, a) is true, and so
‘R(a,a)V —R(a,a) is true in that interpretation. These are
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the only alternatives. So ‘R(a, a)V—R(a, a)’ is true in every
interpretation. Therefore, it is a validity.

This argument is valid, of course, and its conclusion is true. However,
it is not an argument in FOL. Rather, it is an argument in English about
FOL: it is an argument in the metalanguage.

Note another feature of the argument. Since the sentence in ques-
tion contained no quantifiers, we did not need to think about how to
interpret ‘a’ and ‘R’; the point was just that, however we interpreted
them, ‘R(a, a)’ would have some truth value or other. (We could ulti-
mately have given the same argument concerning TFL sentences.)

Here is another bit of reasoning.  Consider the sentence
Va(R(x,x) V -R(x,x)). Again, it should obviously be a validity, but
to say precisely why is quite a challenge. We cannot say that ‘R(x, x) V
—R(x,x)’ is true in every interpretation, since ‘R(x, x) V =R(x, x)’ is not
even a sentence of FOL (remember that ‘x’ is a variable, not a name).
So we have to be a bit cleverer.

Consider some arbitrary interpretation. Vx(R(x,x) V
—R(x, x)) is true in our interpretation iff R(x, x) V - R(x, x)
is satisfied by every object of its domain. Consider some
arbitrary member of the domain, which, for convenience,
we will call Fred. Either Fred satisfies R(x, x) or it does
not. If Fred satisfies ‘R(x,x)’, then Fred also satisfies
‘R(x,x) V ~R(x,x). If Fred does not satisfy ‘R(x,x)’, it
does satisfy ‘—R(x, x)’ and so also ‘R(x,x) V =R(x,x)’.* So
either way, Fred satisfies ‘R(x,x) V ~R(x, x)’. Since there
was nothing special about Fred—we might have chosen
any object—we see that every object in the domain satisfies
‘R(x,x)V—=R(x,x). So ‘Vx(R(x,x)V-R(x,x)) is true in our
interpretation. But we chose our interpretation arbitrarily,
so ‘Vx(R(x,x) V ~R(x,x)) is true in every interpretation.
It is therefore a validity.

This is quite longwinded, but, as things stand, there is no alternative.
In order to show that a sentence is a validity, we must reason about al/
interpretations.

1We use here the fact that the truth conditions for connectives also apply
to satisfaction: a satisfies d(x) vV B(x) iff a satisfies oA(x) or B(x), etc.
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31.2 Other cases

Similar points hold of other cases too. Thus, we must reason about all
interpretations if we want to show:

that a sentence is a contradiction; for this requires that it is false
in every interpretation.

that two sentences are logically equivalent; for this requires that
they have the same truth value in every interpretation.

that some sentences are jointly unsatisfiable; for this requires that
there is no interpretation in which all of those sentences are true
together; i.e. that, in every interpretation, at least one of those
sentences is false.

that an argument is valid; for this requires that the conclusion is
true in every interpretation where the premises are true.

that some sentences entail another sentence.

The problem is that, with the tools available to you so far, reasoning
about all interpretations is a serious challenge! Let’s take just one more
example. Here is an argument which is obviously valid:

Vx(H(x) A J(x)) .. Va H(x)

After all, if everything is both A and J, then everything is H. But we
can only show that the argument is valid by considering what must be
true in every interpretation in which the premise is true. To show this,
we would have to reason as follows:

Consider an arbitrary interpretation in which the premise
Vx(H(x) A J(x)) is true. It follows that ‘H(x) A J(x)
is satisfied by every object in this interpretation. ‘H(x)’
will, then, also be satisfied by every object.? So it must be
that ‘Vx H(x)’ is true in the interpretation. We’ve assumed
nothing about the interpretation except that it was one in
which ‘Vx(H(x) A J(x)) is true, so any interpretation in
which ‘Vx(H(x) A J(x))’ is true is one in which ‘Vx H(x)’
is true. The argument is valid!

Even for a simple argument like this one, the reasoning is somewhat
complicated. For longer arguments, the reasoning can be extremely
torturous.

2Here again we make use of the fact that any object that satisfies sl(x) A
%B(a) must satisfy both d(x) and B(x).
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The following table summarises whether a single interpretation or
counter-interpretation suffices, or whether we must reason about all

interpretations.
Yes No
validity? all interpretations  one counter-interpretation
contradiction? all interpretations one counter-interpretation
equivalent? all interpretations  one counter-interpretation
satisfiable? one interpretation all interpretations
valid? all interpretations  one counter-interpretation
entailment? all interpretations  one counter-interpretation

This might usefully be compared with the table at the end of §13.
The key difference resides in the fact that TFL concerns truth tables,
whereas FOL concerns interpretations. This difference is deeply impor-
tant, since each truth-table only ever has finitely many lines, so that a
complete truth table is a relatively tractable object. By contrast, there
are infinitely many interpretations for any given sentence(s), so that
reasoning about all interpretations can be a deeply tricky business.
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Regras basicas
da LPO

The language of FOL makes use of all of the connectives of TFL. So
proofs in FOL will use all of the basic and derived rules from Part IV.
We will also use the proof-theoretic notions (particularly, the symbol
‘+’) introduced there. However, we will also need some new basic rules
to govern the quantifiers, and to govern the identity sign.

32.1 Universal elimination

From the claim that everything is F, you can infer that any particular
thing is F. You name it; it’s 7. So the following should be fine:

1 | VxR(x,x,d)
2 | R(a,a,d) VE 1

We obtained line 2 by dropping the universal quantifier and replacing
every instance of ‘x” with ‘a’. Equally, the following should be allowed:

1 | VxR(x,x,d)
2 | R(d,d,d) VE 1
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We obtained line 2 here by dropping the universal quantifier and repla-
cing every instance of ‘¥’ with ‘d’. We could have done the same with
any other name we wanted.

This motivates the universal elimination rule (VE):

A(...c...c...) VE m

The notation here was introduced in §28. The point is that you
can obtain any substitution instance of a universally quantified formula:
replace every instance of the quantified variable with any name you
like.

We should emphasize that (as with every elimination rule) you can
only apply the VE rule when the universal quantifier is the main logical
operator. So the following is banned:

1 | Vx B(x) — B(k)

2 ‘ B(b) — B(k) naughy attempt to invoke VE 1

This is illegitimate, since ‘Y&’ is not the main logical operator in line
1. (If you need a reminder as to why this sort of inference should be
banned, reread §22.)

32.2 Existential introduction

From the claim that some particular thing is F, you can infer that so-
mething is . So we ought to allow:

1 | R(a,a,d)
2 | 3xR(a,a,x) dI1

Here, we have replaced the name ‘d’ with a variable ‘x’, and then exis-
tentially quantified over it. Equally, we would have allowed:

1 | R(a,a,d)
2 | 3xR(x,x,d) 31
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Here we have replaced both instances of the name ‘@’ with a variable,
and then existentially generalised. But we do not need to replace both
instances of a name with a variable: if Narcissus loves himself, then
there is someone who loves Narcissus. So we also allow:

2 | 3xR(x,a,d) 311

Here we have replaced one instance of the name ‘a’ with a variable,
and then existentially generalised. These observations motivate our
introduction rule, although to explain it, we will need to introduce some
new notation.

Where d is a sentence containing the name ¢, we can emphasize
this by writing ‘d(...<c...c...). We will write ‘d(...ax...c...) to
indicate any formula obtained by replacing some or all of the instances
of the name ¢ with the variable «. Armed with this, our introduction
rule is:

m |d(...c...c...)
e d(...x...c...) dlm

o must not occur in A(...¢c...c...)

The constraint is included to guarantee that any application of the
rule yields a sentence of FOL. Thus the following is allowed:

1 | R(a,a,d)
2 | 3xR(x,a,d) a1

3 | AxR(x,9,d) 32
But this is banned:

1 | R(a,a,d)

2 | 3xR(x,a,d) a1
3 | 3x3x R(x,x,d) naughty attempt to invoke 3I 2

since the expression on line 3 contains clashing variables, and so is not
a sentence of FOL.
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32.3 Empty domains

The following proof combines our two new rules for quantifiers:

2 | F(a) VE 1
3 |3IxF(x) 32

Could this be a bad proof? If anything exists at all, then certainly
we can infer that something is F, from the fact that everything is F.
But what if nothing exists at all? Then it is surely vacuously true that
everything is F'; however, it does not following that something is F, for
there is nothing to be F. So if we claim that, as a matter of logic alone,
‘Ax F(x) follows from ‘Vx F(x)’, then we are claiming that, as a matter
of logic alone, there is something rather than nothing. This might strike
us as a bit odd.

Actually, we are already committed to this oddity. In §21, we sti-
pulated that domains in FOL must have at least one member. We then
defined a validity (of FOL) as a sentence which is true in every inter-
pretation. Since ‘Ixx = x’ will be true in every interpretation, this
also had the effect of stipulating that it is a matter of logic that there is
something rather than nothing.

Since it is far from clear that logic should tell us that there must be
something rather than nothing, we might well be cheating a bit here.

If we refuse to cheat, though, then we pay a high cost. Here are
three things that we want to hold on to:

e Vx F(x) + F(a): after all, that was VE.

e F(a)+ dx F(x): after all, that was 3I.

* the ability to copy-and-paste proofs together: after all, reasoning
works by putting lots of little steps together into rather big chains.

If we get what we want on all three counts, then we have to countenance
that VxFx + 3x F(x). So, if we get what we want on all three counts, the
proof system alone tells us that there is something rather than nothing.
And if we refuse to accept that, then we have to surrender one of the
three things that we want to hold on to!

Before we start thinking about which to surrender, we might want
to ask how much of a cheat this is. Granted, it may make it harder to
engage in theological debates about why there is something rather than
nothing. But the rest of the time, we will get along just fine. So maybe
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we should just regard our proof system (and FOL, more generally) as
having a very slightly limited purview. If we ever want to allow for
the possibility of nothing, then we will have to cast around for a more
complicated proof system. But for as long as we are content to ignore
that possibility, our proof system is perfectly in order. (As, similarly, is
the stipulation that every domain must contain at least one object.)

32.4 Universal introduction

Suppose you had shown of each particular thing that it is F (and that
there are no other things to consider). Then you would be justified in
claiming that everything is F. This would motivate the following proof
rule. If you had established each and every single substitution instance
of ‘Vx F(x)’, then you can infer ‘Vx F(x) .

Unfortunately, that rule would be utterly unusable. To establish
each and every single substitution instance would require proving
‘F(a), ‘F(b), ..., ‘F(j2), ..., ‘F(r9002)s - - ., and so on. Indeed, since
there are infinitely many names in FOL, this process would never come
to an end. So we could never apply that rule. We need to be a bit more
cunning in coming up with our rule for introducing universal quantifi-
cation.

A solution will be inspired by considering:

Vx F(x)..Vy F(y)

This argument should obviously be valid. After all, alphabetical varia-
tion ought to be a matter of taste, and of no logical consequence. But
how might our proof system reflect this? Suppose we begin a proof thus:

1 | VxF(x)
92 | F(a) VE 1

We have proved ‘F(a)’. And, of course, nothing stops us from using the
same justification to prove ‘F(b)’, ‘F(c)’, ..., ‘F(j2)’, ..., ‘F(r79002), - - - »
and so on until we run out of space, time, or patience. But reflecting
on this, we see that there is a way to prove Fc, for any name <. And
if we can do it for any thing, we should surely be able to say that ‘F” is
true of everything. This therefore justifies us in inferring ‘Vy F(y)’, thus:



244 CAPITULO 32. REGRAS BASICAS DA LPO

2 | F(a) VE 1
3 | VyF(y) VI2

The crucial thought here is that ‘e’ was just some arbitrary name. There
was nothing special about it—we might have chosen any other name—
and still the proof would be fine. And this crucial thought motivates
the universal introduction rule (VI):

m | d(...c...c...)
Ved(...x...x...) Vim

< must not occur in any undischarged assumption
2 must not occurin A(...¢c...c...)

A crucial aspect of this rule, though, is bound up in the first cons-
traint. This constraint ensures that we are always reasoning at a suffici-
ently general level. To see the constraint in action, consider this terrible
argument:

Everyone loves Kylie Minogue; therefore everyone loves
themselves.

We might symbolize this obviously invalid inference pattern as:

Va L(x, k) .". Vx L(x, x)
Now, suppose we tried to offer a proof that vindicates this argument:
Vx L(x, k)
Lk, k) VE 1

Vx L(x,x) naughty attempt to invoke VI 2

This is not allowed, because ‘k’ occurred already in an undischarged
assumption, namely, on line 1. The crucial point is that, if we have
made any assumptions about the object we are working with, then we
are not reasoning generally enough to license VI.

Although the name may not occur in any undischarged assumption,
it may occur in a discharged assumption. That is, it may occur in a
subproof that we have already closed. For example, this is just fine:
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1] | G
2 | | Ga@) R1
3 | G(d) > G(d) —11-2
4 | Y2(G(z) > G(z)) VI3

This tells us that ‘Vz(G(z) — G(z))’ is a theorem. And that is as it should
be.

We should emphasise one last point. As per the conventions of
§28.3, the use of VI requires that we are replacing every instance of the
name ¢ in A(...« ...« ...) with the variable «. If we only replace some
names and not others, we end up ‘proving’ silly things. For example,
consider the argument:

Everyone is as old as themselves; so everyone is as old as
Judi Dench

We might symbolise this as follows:
VxO(x,x).". Yx O(x, d)

But now suppose we tried to vindicate this terrible argument with the
following:

Vx O(x, x)

2 |10, d) VE 1
Vx O(x,d) naughty attempt to invoke VI 2

Fortunately, our rules do not allow for us to do this: the attempted proof
is banned, since it doesn’t replace every occurrence of ‘d’ in line 2 with
an ‘x’.

32.5 Existential elimination

Suppose we know that something is F. The problem is that simply
knowing this does not tell us which thing is /. So it would seem that
from ‘3x F(x)’ we cannot immediately conclude ‘F(a)’, ‘F(eg3)’, or any
other substitution instance of the sentence. What can we do?

Suppose we know that something is F, and that everything which
is F is also G. In (almost) natural English, we might reason thus:
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Since something is F, there is some particular thing which
is an . We do not know anything about it, other than
that it’s an F, but for convenience, let’s call it ‘Becky’. So:
Becky is F. Since everything which is F' is G, it follows that
Becky is G. But since Becky is G, it follows that something
is G. And nothing depended on which object, exactly,
Becky was. So, something is G.

We might try to capture this reasoning pattern in a proof as follows:

1 | 3xF(x)

2 | Vx(F(x) > G(x))

3| | Fb)

4| | Fo)> G()  VE2

51 |G —E 4,3
6 | |3xGr) 35

7 | 3x G(x) 3E 1, 3-6

Breaking this down: we started by writing down our assumptions. At
line 3, we made an additional assumption: ‘F(b)’. This was just a
substitution instance of ‘Ix F(x)’. On this assumption, we established
‘3x G(x)’. Note that we had made no special assumptions about the
object named by ‘b’; we had only assumed that it satisfies ‘F(x)’. So
nothing depends upon which object it is. And line 1 told us that so-
mething satisfies ‘F(x)’, so our reasoning pattern was perfectly gene-
ral. We can discharge the specific assumption ‘F(4)’, and simply infer
‘Jx G(x)’ on its own.

Putting this together, we obtain the existential elimination rule
(3E):
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m | Jed(...xc...x...)
i |91(...c...c...)
i||®
RB 3E m, i—j

< must not occur in any assumption undischarged before line ¢
< must not occur in Jx A(...x...x...)
< must not occur in AR

As with universal introduction, the constraints are extremely im-
portant. To see why, consider the following terrible argument:

Tim Button is a lecturer. Someone is not a lecturer. So
Tim Button is both a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as follows:
L(b),3x—=L(x) .". L(b) A =L(b)

Now, suppose we tried to offer a proof that vindicates this argument:

L(b)
dx —|L(x)

~L(b)
L) A-L(}) ALl 3

L(b) A =L(b) naughty attempt

Gt 0 N

to invoke JE 2, 3—4

The last line of the proof is not allowed. The name that we used in
our substitution instance for ‘3x =L(x)’ on line 3, namely ‘4’, occurs in
line 4. The this would be no better:
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L(b)
Ax - L(x)

L(b) A —L(b) ALl 3
Ax(L(x) A =L(x)) 314

N T T oSy

Ax(L(x) A =L(x)) naughty attempt
to invoke JE 2, 3-5

The last line is still not allowed. For the name that we used in our subs-
titution instance for ‘3x =L(x)’, namely ‘4’, occurs in an undischarged
assumption, namely line 1.

The moral of the story is this. If you want to squeeze information out
of an existential quantifier, choose a new name for your substitution instance.
That way, you can guarantee that you meet all the constraints on the
rule for JE.

Exercicios

A. Explain why these two ‘proofs’ are incorrect. Also, provide inter-
pretations which would invalidate the fallacious argument forms the
‘proofs’ enshrine:

1 | VxR(x,x) 1 | Vx3yR(x,y)
2 | R(a,a) VE 1 2 | Iy R(a,y) VE 1
3 | VyR(a,y) V12 3 R(a,a)
4 | VxVyR(x,y) VI3 4 JxR(x,x) 313
5 | Ax R(x, x) JE 2, 34

B. The following three proofs are missing their citations (rule and line
numbers). Add them, to turn them into bona fide proofs.
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Vx3y(R(x,y) V R(, x))

Vx —~R(m, x)

y(R(m,y) V R(y, m))
R(m,a)V R(a,m)

=R(m, a)
R(a, m)

dx R(x, m)

ool = T N CCRE O

3x R(x, m)
Vx(3y L(x,y) — ¥z L(z x))
L(a, b)
3y L(a,y) — VzL(z, a)
3y L(a, y)
Vz L(z, a)
L(c, a)
Jy L(e,y) = Yz L(z¢)
Ty L(c. y)
Vz L(z ¢)
L(e,c)
Vi L(x, x)

© L NN Y W N
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=

Vx(J(x) = K(x))
Jx Vy L(x, y)

Vx J(x)

Vy L(a, y)

L(a, a)

J ()

J(a) — K(a)
K(a)

© 0NN Y N

K(a) A L(a, a)

[
=)

Ax(K(x) A L(x, x))

11 | 3x(K(x) A L(x, x))

C. In §22 problem A, we considered fifteen syllogistic figures of Aris-
totelian logic. Provide proofs for each of the argument forms. NB: You
will find it much easier if you symbolize (for example) ‘No F is G’ as
Vx(F(x) - =G(x)).

D. Aristotle and his successors identified other syllogistic forms which
depended upon ‘existential import’. Symbolize each of these argument
forms in FOL and offer proofs.

1.

Barbari. Something is H. All G are F. All H are G. So: Some H
isF

Celaront. Something is H. No G are F. All H are G. So: Some
His not F

Cesaro. Something is H. No F are G. All H are G. So: Some H
is not F.

Camestros. Something is H. All F are G. No H are G. So: Some
H is not F.

Felapton. Something is G. No G are F. All G are H. So: Some
H is not F.

. Darapti. Something is G. All G are F. All G are H. So: Some H

is F.
Calemos. Something is H. All F are G. No G are H. So: Some
H is not F.
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8. Fesapo. Something is G. No F is G. All G are H. So: Some H is
not F.

9. Bamalip. Something is F. All F are G. All G are H. So: Some H
are F.

E. Provide a proof of each claim.

FVx F(x) = Yy(F(y) A F(y))

Vx(A(x) — B(x)),3x A(x) + Ix B(x)

Vx(M(x) < N(x)), M(a) A 3x R(x,a) + 3x N(x)

VaVy G(x,y) + Ix G(x, x)

FVxR(x,x) — 3x 3y R(x, )

- ¥y 3x(Q() — Q(x)

N(a) - Vx(M(x) < M(a)), M(a),-M(b) + =N (a)

VxVy(G(x,9) = G(y,x)) F YaVy(G(x,y) < G(9,x))

Vx(=M(x) vV L(j, x)),Vx(B(x) — L(j,x)),VYx(M(x) V B(x)) F
VxL(j, x)

© LON o ®w K

F. Write a symbolization key for the following argument, symbolize it,
and prove it:

There is someone who likes everyone who likes everyone
that she likes. Therefore, there is someone who likes her-
self.

G. Show that each pair of sentences is provably equivalent.

1. Vx(A(x) — —B(x)), ~3x(A(x) A B(x))
2. Yx(=A(x) = B(d)), Yx A(x) V B(d)
3. dx P(x) — Q(c), Vx(P(x) — Q(c))

H. For each of the following pairs of sentences: If they are provably
equivalent, give proofs to show this. If they are not, construct an inter-
pretation to show that they are not logically equivalent.

Vx P(x) — Q(c), Vx(P(x) — Q(c))
VxVyVz B(x,y,z),Vx B(x, x)x

VxVy D(x,9),Vy Vx D(x,y)

Ax Vy D(x, y), Vy 3x D(x, y)

5. Vx(R(¢,a) & R(x,a)),R(c,a) & Vx R(x, a)

A

I. For each of the following arguments: If it is valid in FOL, give a proof.
If it is invalid, construct an interpretation to show that it is invalid.

1. dyVxR(x,9) .. Vx Iy R(x, y)
2. VxdyR(x,y).". yVx R(x,y)
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Jx(P(x) A 2Q(x)) .. Vx(P(x) = —Q(x))

Vax(S(x) — T(a)),S(d) .. T(a)

Vx(A(x) — B(x)),Vx(B(x) — C(x)) .". Yx(A(x) — C(x))
Ax(D(x) V E(x)), Vx(D(x) — F(x)) .. x(D(x) A F(x))
VxVy(R(x.9) V R %)) .. R(j. )

3x Jy(R(x,y) V R %)) . R(j, )

Vx P(x) = Vx Q(x), 3x ~P(x) .". Ix ~Q(x)

Ax M(x) — Jx N(x), ~Ix N(x) .". Va =M (x)
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Provas com
quantificado-
res

In §16 we discussed strategies for constructing proofs using the basic
rules of natural deduction for TFL. The same principles apply to the ru-
les for the quantifiers. If we want to prove a quantifier sentence Va 9(x)
or Jx dl(a). We can work backward by justifying the sentence we want
by VI or 3I and trying to find a proof of the corresponding premise of
that rule. And to work forward from a quantified sentence, we apply
VE or 3E, as the case may be.

Specifically, suppose you want to prove Va d(a). To do so using VI,
we would need a proof of sd(¢) for some name ¢ which does not occur
in any undischarged assumption. To apply the corresponding strategy,
i.e., to construct a proof of Vo sd(a) by working backward, is thus to
write 9l(¢) above it and then to continue to try to find a proof of that
sentence.

n A(c)
n+l | Ved(x) Vin

253
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d(c) is obtained from d(a) by replacing every free occurrence of
in d(a) by <. For this to work, ¢ must satisfy the special condition.
We can ensure that it does by always picking a name that does not
already occur in the proof constructed so far. (Of course, it will occur
in the proof we end up constructing—just not in an assumption that is
undischarged at line n + 1.)

To work backward from a sentence Jx 9(x) we similarly write a
sentence above it that can serve as a justification for an application of
the 3l rule, i.e., a sentence of the form d(¢).

n A(c)
n+l | Jxd(x) dn

This looks just like what we would do if we were working backward
from a universally quantified sentence. The difference is that whereas
for VI we have to pick a name ¢ which does not occur in the proof (so
far), for 3I we may and in general must pick a name < which already
occurs in the proof. Just like in the case of VI, it is often not clear which
< will work out, and so to avoid having to backtrack you should work
backward from existentially quantified sentences only when all other
strategies have been applied.

By contrast, working forward from sentences 3x 9(x()) generally
always works and you won’t have to backtrack. Working forward from
an existentially quantified sentence takes into account not just 3x 9(x)
but also whatever sentence % you would like to prove. It requires that
you set up a subproof above 9%, wherein % is the last line, and a substi-
tution instance (<) of Joc dd(a) as the assumption. In order to ensure
that the condition on ¢ that governs 3E is satisfied, chose a name ¢
which does not already occur in the proof.
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m T ()

k+1 3E m, n—k

You’ll then continue with the goal of proving %, but now inside a
subproof in which you have an additional sentence to work with, na-
mely d(<¢).

Lastly, working forward from Va dl(a) means that you can always
write down d(¢) and justify it using VE, for any name <. Of course,
you wouldn’t want to do that willy-nilly. Only certain names ¢ will help
in your task of proving whatever goal sentence you are working on. So,
like working backward from Jx 9(x), you should work forward from
Vo sl(x) only after all other strategies have been applied.

Let’s consider as an example the argument Vx(A4A(x) — B) ..
Jx A(x) — B. To start constructing a proof, we write the premise at the
top and the conclusion at the bottom.

Vx(A(x) — B)

dx A(x) —» B

The strategies for connectives of TFL still apply, and you should apply
them in the same order: first work backward from conditionals, ne-
gated sentences, conjunctions, and now also universal quantifiers, then
forward from disjunctions and now existential quantifiers, and only then
try to apply —E, —-E, VI, VE, or 3l In our case, that means, working
backward from the conclusion:
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1 Vx(A(x) — B)

2 dx A(x)

n—1 B

n dx A(x) - B —-[2-(n-1)

Our next step should be to work forward from 3x A(x) on line 2. For
that, we have to pick a name not already in our proof. Since no names
appear, we can pick any name, say ‘d’

1 Vx(A(x) — B)
2 dx A(x)
3

n—2
n—-1 3E 2, 3—(n — 2)
n dx A(x) > B —-[2-(n-1)

Now we’ve exhausted our primary strategies, and it is time to work
forward from the premise Vx(4(x) — B). Applying VE means we can
justify any instance of A(¢) — B, regardless of what ¢ we choose. Of
course, we’ll do well to choose d, since that will give us A(d) — B.
Then we can apply —E to justify B, finishing the proof.

1 | Vx(A(x) — B)

2 dx A(x)

3 A(d)

4 Ad)— B VE1

5 B —E4,3
6 B JE 2, 3-5
7

dx A(x) —» B —-I12-6
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Now let’s construct a proof of the converse. We begin with

dx A(x) —» B

Vx(A(x) — B)

Note that the premise is a conditional, not an existentially quanti-
fied sentence, so we should not (yet) work forward from it. Working
backward from the conclusion, Yx(A(x) — B), leads us to look for a
proof of A(d) — B:

dx A(x) —» B

A(d) — B
Vx(A(x) > B) Vin-1

And working backward from A(d) — B means we should set up a
subproof with 4(d) as an assumption and B as the last line:

1
2
n—2
n—1
n

dx A(x) —» B

A(d)

B
A(d) —» B —I 2-(n - 2)
Vx(A(x) > B) Vin-1

Now we can work forward from the premise on line 1. That’s a condi-
tional, and its consequent happens to be the sentence B we are trying
to justify. So we should look for a proof of its antecedent, Ix A(x). Of
course, that is now readily available, by 3I from line 2, and we’re done:
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1 |3xA(x)—> B

2 A(d)

3| | 3xdx) 31 2

4| | B SE1, 3

5| Ad)— B —12-4

6 | Vx(A(x) > B) VI5
Exercicios

A. Use the strategies to find proofs for each of the following arguments
and theorems:

A — VxB(x)..Vx(4 — B(x))

dx(A — B(x)).". A — 3x B(x)
Vx(A(x) A B(x)) & (Vx A(x) A Vx B(x))
Ax(A(x) vV B(x)) <> (3x A(x) v 3x B(x))
AV VYxB(x))..Vx(AV B(x))

Vx(A(x) —» B) .. Ax A(x) —» B
dx(A(x) —» B) .. Vx A(x) —» B
Vx(A(x) — Ty A(y))

PN o ® b

Use only the basic rules of TFL in addition to the basic quantifier rules.
B. Use the strategies to find proofs for each of the following arguments
and theorems:

. VxR(x,x).". Vx3dy R(x, )
. VaVyVz[(R(x,9) A R(y, 2)) = R(x, 2)]

S VaVy[R(x, 9) = YV2(R(y, z) = R(x, 2))]
. VxVyVz[(R(x,9) A R(y, z)) = R(x, 2)],

Vx Vy(R(x,y) = R(y, x))

S YaVyVz[(R(x, y) A R(x, 2)) — R(y, 2)]
4 VxVy(R(x,y) — R(p, x))

S VaVyVz[(R(x, y) A R(x, z)) — Ju(R(y, u) A R(z, u))]

5. ~3xVy(A(x,y) & =A(y.y))

C. Use the strategies to find proofs for each of the following arguments
and theorems:

1. Vx A(x) > B .. 3x(A(x) — B)

©

w
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2. A — dxB(x) .. 3x(4 — B(x))
3. Vx(4AV B(x)).". AV Vx B(x))
4 Fx(A(x) - Vy A(p)
5. Ix(F Ay) = A)

These require the use of IP. Use only the basic rules of TFL in addition
to the basic quantifier rules.
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Transformacao
de quantifica-
dores

In this section, we will add some additional rules to the basic rules of
the previous section. These govern the interaction of quantifiers and
negation.

In §21, we noted that —3xd is logically equivalent to Vx -sf. We
will add some rules to our proof system that govern this. In particular,
we add:

m | Yo -
-Jxd CQm
and
m | -dx oA
Ve -d CQm
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Equally, we add:

m | Joc -
-Ved CQm
and
m | =V d
Jr-d CQm
Exercicios

A. Show in each case that the sentences are provably inconsistent:

S(a) » T'(m), T(m) - S(a), T(m) A =S(a)

—dx R(x, a),VxVy R(y, x)

-dx Jy L(x, y), L(a, a)

Vx(P(x) — Q(x), V2(P(2) - R(2)), ¥y P(y), ~Q(a) A ~R(b)

B. Show that each pair of sentences is provably equivalent:

1. Vx(A(x) — =B(x)), ~3x(A(x) A B(x))
2. Vx(=A(x) — B(d)),VYx A(x) vV B(d)

C. In §22, we considered what happens when we move quantifiers
‘across’ various logical operators. Show that each pair of sentences
is provably equivalent:

Vx(F(x) A G(a)),VYx F(x) A G(a)
Ax(F(x) vV G(a)),Ix F(x) V G(a)
Vx(G(a) — F(x)),G(a) — Yx F(x)
Vx(F(x) — G(a)),3x F(x) — G(a)
Ax(G(a) - F(x)),G(a) — Ix F(x)
Ax(F(x) — G(a)),Vx F(x) = G(a)

NB: the variable ‘x’ does not occur in ‘G(a)’. When all the quantifiers
occur at the beginning of a sentence, that sentence is said to be in prenex
normal form. These equivalences are sometimes called prenexing rules,
since they give us a means for putting any sentence into prenex normal
form.

Ll
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As regras para
a identidade

In §27, we mentioned the philosophically contentious thesis of the iden-
tity of indiscernibles. This is the claim that objects which are indiscernible
in every way are, in fact, identical to each other. It was also mentio-
ned that we will not subscribe to this thesis. It follows that, no matter
how much you learn about two objects, we cannot prove that they are
identical. That is unless, of course, you learn that the two objects are,
in fact, identical, but then the proof will hardly be very illuminating.

The general point, though, is that no sentences which do not already
contain the identity predicate could justify an inference to ‘a = #’. So
our identity introduction rule cannot allow us to infer to an identity
claim containing two different names.

However, every object is identical to itself. No premises, then, are
required in order to conclude that something is identical to itself. So
this will be the identity introduction rule:

Notice that this rule does not require referring to any prior lines of
the proof. For any name ¢, you can write ¢ = ¢ on any point, with only
the =I rule as justification.

Our elimination rule is more fun. If you have established ‘a = &’,
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then anything that is true of the object named by ‘a’ must also be true
of the object named by ‘4’. For any sentence with ‘@’ in it, you can
replace some or all of the occurrences of ‘a’ with ‘4’ and produce an
equivalent sentence. For example, from ‘R(a, a)’ and ‘a = &’, you are
justified in inferring ‘R(a, ), ‘R(b, a)’ or ‘R(b, b)’. More generally:

m | =0
n |d(...¢...¢...)
A(...6...a...) =Em,n

The notation here is as for dI. So A(...« ...« ...) is a formula
containing the name «, and d(...6 ...« ...) is a formula obtained by
replacing one or more instances of the name « with the name 6. Lines
m and z can occur in either order, and do not need to be adjacent, but
we always cite the statement of identity first. Symmetrically, we allow:

m | a=%6
n |dA(..6...6...)
A(...a...6...) =Em,n

This rule is sometimes called Leibniz’s Law, after Gottfried Leibniz.
To see the rules in action, we will prove some quick results. First,
we will prove that identity is symmetric:

1

2 =I

3 =E 1, 2
4 —I1-3
5 |Vya=y—>y=a) VI 4

6 | VaVy(x =y —>9y=x) VI5

We obtain line 3 by replacing one instance of ‘@’ in line 2 with an
instance of ‘p’; this is justified given ‘a = 5’.
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Second, we will prove that identity is ¢ransitive:

1 a=bnb=c

2 a=5b AE 1
3 b=c¢ AE 1
4 a=c =E 2, 3
5|(a=bArb=¢c)—>a=c¢ —I1-4
6 |Vz((a=bAb=2)—> a=2) vI5

7 | VyVz((a=yAy=2) > a=2) VI6

8 | VaVyVaz((x =yAy=2)—>x=2) VI7

We obtain line 4 by replacing ‘4’ in line 3 with ‘a’; this is justified given
‘a=1"b.

Exercicios

A. Provide a proof of each claim.

1. P(a)Vv Q(b),Q(b) > b =¢,—~P(a)+ Q(c)

2. m=nVn=oA(n)+ A(m) Vv A(o)

3. Vx x = m,R(m, a) v 3x R(x, x)

4. VxVy(R(x,9) = x =y) + R(a,b) = R(b,a)

5. —dx—x =m + VxVy(P(x) — P(y))

6. Ix J(x),Ix-J(x)rIxdy-x =y

7. Yx(x = n & M(x)),Yx(0(x) V =M (x)) + O(n)

8. Ix D(x),Vx(x = p & D(x)) + D(p)

9. x[(K(x) AVy(K(y) = x =) A B(x)|, Kd + B(d)
0

10. + P(a) — Yx(P(x) V —~x = a)

B. Show that the following are provably equivalent:

o x([F(x) AVy(F(y) > x =) A x =n)
s F(n) ANVy(F(y) = n=y)

And hence that both have a decent claim to symbolize the English
sentence ‘Nick is the F’.
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C. In §24, we claimed that the following are logically equivalent sym-
bolizations of the English sentence ‘there is exactly one F’:

e Ax F(x) A VxVy[(F(x) ANF(y) — x =y]

« 3x[F(x) AVY(F(y) = x = y)]

o Vy(F(y) o x=y)
Show that they are all provably equivalent. (Hint: to show that three
claims are provably equivalent, it suffices to show that the first proves
the second, the second proves the third and the third proves the first;
think about why.)

D. Symbolize the following argument

There is exactly one F. There is exactly one G. Nothing
is both " and G. So: there are exactly two things that are
either F or G.

And offer a proof of it.
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Regras
derivadas

As in the case of TFL, we first introduced some rules for FOL as basic
(in §32), and then added some further rules for conversion of quantifiers
(in §34). In fact, the CQ rules should be regarded as derived rules, for
they can be derived from the basic rules of §32. (The point here is as
in §19.) Here is a justification for the first CQ rule:

1 | Vx-A(x)

2 dx A(x)

3 A(c)

4 -A(c) VE1

5 1 -E 4, 3

6 1 JE 2, 3-5
7 | =3x A(x) -12-6

Here is a justification of the third CQ rule:
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P A T U

7

dx —|A(x)

—|A(C)
A(c)

1

-Vx A(x)

Vx A(x)

VE 2

-E 3, 4
3E 1, 3-5
-12-6

267

This explains why the CQ rules can be treated as derived. Similar

justifications can be offered for the other two CQ rules.

Exercicios

A. Offer proofs which justify the addition of the second and fourth CQ
rules as derived rules.
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Provas e
semantica

We have used two different turnstiles in this book. This:
A, Ao, ..., A, +6

means that there is some proof which starts with assumptions
di,dy,...,d, and ends with € (and no undischarged assumptions
other than oy, dy, ..., o,). This is a proof-itheoretic notion.
By contrast, this:
A, dy, ..., d, EB

means that no valuation (or interpretation) makes all of dy, dy, ..., d,
true and 6 false. This concerns assignments of truth and falsity to
sentences. It is a semantic notion.

It cannot be emphasized enough that these are different notions.
But we can emphasize it a bit more: They are different notions.

Once you have internalised this point, continue reading.

Although our semantic and proof-theoretic notions are different,
there is a deep connection between them. To explain this connection,we
will start by considering the relationship between validities and theo-
rems.

To show that a sentence is a theorem, you need only produce a
proof. Granted, it may be hard to produce a twenty line proof, but it
is not so hard to check each line of the proof and confirm that it is
legitimate; and if each line of the proof individually is legitimate, then
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the whole proof is legitimate. Showing that a sentence is a validity,
though, requires reasoning about all possible interpretations. Given a
choice between showing that a sentence is a theorem and showing that
it is a validity, it would be easier to show that it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard. We
would need to reason about all (possible) proofs. That is very difficult.
However, to show that a sentence is not a validity, you need only cons-
truct an interpretation in which the sentence is false. Granted, it may
be hard to come up with the interpretation; but once you have done
so, it is relatively straightforward to check what truth value it assigns
to a sentence. Given a choice between showing that a sentence is not a
theorem and showing that it is not a validity, it would be easier to show
that it is not a validity.

Fortunately, a sentence is a theorem if and only if it is a validity. As a
result, if we provide a proof of ¢ on no assumptions, and thus show that
o is a theorem, i.e. + o, we can legitimately infer that o is a validity,
i.e., £ 9. Similarly, if we construct an interpretation in which o is false
and thus show that it is not a validity, i.e. # d, it follows that o is not
a theorem, i.e. ¥ 9.

More generally, we have the following powerful result:

A, Aoy ... A, - B A1, Ay, ..., A, EDRB

This shows that, whilst provability and entailment are different notions,
they are extensionally equivalent. As such:

* An argument is valid iff the conclusion can be proved from the premi-
ses.

» Two sentences are logically equivalent iff they are provably equiva-
lent.

* Sentences are satisfiable iff they are not provably inconsistent.

For this reason, you can pick and choose when to think in terms of
proofs and when to think in terms of valuations/interpretations, doing
whichever is easier for a given task. The table on the next page sum-
marises which is (usually) easier.

It is intuitive that provability and semantic entailment should agree.
But—Ilet us repeat this—do not be fooled by the similarity of the sym-
bols ‘F* and ‘+’. These two symbols have very different meanings. The
fact that provability and semantic entailment agree is not an easy result
to come by.
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In fact, demonstrating that provability and semantic entailment
agree is, very decisively, the point at which introductory logic becomes
intermediate logic.
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Logica modal



CAPITULO 38

Introduzindo
a logica
modal

Modal logic (ML) is the logic of modalities, ways in which a statement
can be true. Necessity and possibility are two such modalities: a statement
can be true, but it can also be necessarily true (true no matter how the
world might have been). For instance, logical truths are not just true
because of some accidental feature of the world, but true come what
may. A possible statement may not actually be true, but it might have
been true. We use O to express necessity, and < to express possibility.
So you can read Od as It is necessarily the case that A, and O as It is
possibly the case that A.

There are lots of different kinds of necessity. It is Aumanly impossible
for me to run at 10omph. Given the sorts of creatures that we are, no
human can do that. But still, it isn’t physically impossible for me to run
that fast. We haven’t got the technology to do it yet, but it is surely
physically possible to swap my biological legs for robotic ones which
could run at 10omph. By contrast, it is physically impossible for me
to run faster than the speed of light. The laws of physics forbid any
object from accelerating up to that speed. But even that isn’t logically
impossible. It isn’t a contradiction to imagine that the laws of physics
might have been different, and that they might have allowed objects to
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move faster than light.

Which kind of modality does ML deal with? Al of them! ML is
a very flexible tool. We start with a basic set of rules that govern O
and ¢, and then add more rules to fit whatever kind of modality we
are interested in. In fact, ML is so flexible that we do not even have to
think of O and ¢ as expressing necessity and possibility. We might instead
read O as expressing provability, so that O means It is provable that A,
and Od means It is not refutable that 9. Similarly, we can interpret O
to mean S knows that A or § believes that . Or we might read O as
expressing moral obligation, so that O means It is morally obligatory that
d, and Od means It is morally permissible that oi. All we would need to
do is cook up the right rules for these different readings of O and <.

A modal formula is one that includes modal operators such as O
and ¢. Depending on the interpretation we assign to O and <, different
modal formulas will be provable or valid. For instance, O — 04 might
say that “if o is necessary, it is true,” if O is interpreted as necessity.
It might express “if o is known, then it is true,” if O expresses known
truth. Under both these interpretations, 04 — d is valid: All necessary
propositions are true come what may, so are true in the actual world.
And if a proposition is known to be true, it must be true (one can’t
know something that’s false). However, when O is interpreted as “it is
believed that” or “it ought to be the case that,” Osl — ¢ is not valid:
We can believe false propositions. Not every proposition that ought to
be true is in fact true, e.g., “Every murderer will be brought to justice.”
This ought to be true, but it isn’t.

We will consider different kinds of systems of ML. They differ in
the rules of proof allowed, and in the semantics we use to define our
logical notions. The different systems we’ll consider are called K, T,
S4, and S5. K is the basic system; everything that is valid or provable
in K is also provable in the others. But there are some things that K
does not prove, such as the formula 04 — 4. So K is not an appro-
priate modal logic for necessity and possibility (where 0Osl — ol should
be provable). This is provable in the system T, so T is more appro-
priate when dealing with necessity and possibiliity, but less apropriate
when dealing with belief or obligation, since then 09 — o should ot
(always) be provable. The perhaps best system of ML for necessity and
possibility, and in any case the most widely accepted, is the strongest
of the systems we consider, S5.
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38.1 The Language of ML

In order to do modal logic, we have to do two things. First, we want
to learn how to prove things in ML. Second, we want to see how to
construct interpretations for ML. But before we can do either of these
things, we need to explain how to construct sentences in ML.

The language of ML is an extension of TFL. We could have started
with FOL, which would have given us Quantified Modal Logic (QML).
OML is much more powerful than ML, but it is also much, much more
complicated. So we are going to keep things simple, and start with TFL.

Just like TFL, ML starts with an infinite stock of atoms. These are
written as capital letters, with or without numerical subscripts: 4, B,
...41, By, ... We then take all of the rules about how to make sentences
from TFL, and add two more for 0O and <:

(1) Every atom of ML is a sentence of ML.
(2) If of is a sentence of ML, then —d is a sentence of ML.

(3) If o and % are sentences of ML, then (4 A 9B) is a sentence of
ML.

(4) If of and % are sentences of ML, then (s V %) is a sentence of
ML.

(5) If o and 9 are sentences of ML, then (o4 — 9B) is a sentence of
ML.

(6) If o and 9B are sentences of ML, then (o <> 3B) is a sentence of
ML.

(7) If o is a sentence of ML, then O is a sentence of ML.
(8) If o is a sentence of ML, then Od is a sentence of ML.
(9) Nothing else is a sentence of ML.

Here are some examples of ML sentences:

A4, PV Q, 04, CvoD, oo(4 — R), 0O(S A (Z & (@W v ©Q)))



Deducdo
natural para
a LM

Now that we know how to make sentences in ML, we can look at
how to prove things in ML. We will use + to express provability. So
di,dy,...d, r 6 means that ‘6 can be proven from ¢y, do, ... d,.
However, we will be looking at a number of different systems of ML,
and so it will be useful to add a subscript to indicate which system we
are working with. So for example, if we want to say that we can prove
6 from dy, Ay, . .. d, in system K, we will write: dq, do, ... d, Fk 6.

39.1 System K

We start with a particularly simple system called K, in honour of the
philosopher and logician Saul Kripke. K includes all of the natural
deduction rules from TFL, including the derived rules as well as the
basic ones. K then adds a special kind of subproof, plus two new basic
rules for 0.

The special kind of subproof looks like an ordinary subproof, except
it has a Oin its assumption line instead of a formula. We call them
strict subproofs—they allow as to reason and prove things about alternate
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possibilities. What we can prove inside a strict subproof holds in any
alternate possibility, in particular, in alternate possibilities where the
assumptions in force in our proof may not hold. In a strict subproofs,
all assumptions are disregarded, and we are not allowed to appeal to
any lines outside the strict subproof (except as allowed by the modal
rules given below).

The OI rule allows us to derive a formula Odl if we can derive o
inside a strict subproof. It is our fundamental method of introducing O
into proofs. The basic idea is simple enough: if o is a theorem, then O
should be a theorem too. (Remember that to call of a theorem is to say
that we can prove 4 without relying on any undischarged assumptions.)

Suppose we wanted to prove 0(4 — A). The first thing we need to
do is prove that 4 — A is a theorem. You already know how to do that
using TFL. You simply present a proof of 4 — A which doesn’t start
with any premises, like this:

1 A
2 A R1

314—-4 -11-2

But to apply OI, we need to have proven the formula inside a strict
subproof. Since our proof of 4 — A makes use of no assumptions at
all, this is possible.

O

A
A R2

A— A —12-3

[ B R N

04— A4) oll-4
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n dA
od ol m—n

No line above line m may be cited by any rule within the strict
subproof begun at line m unless the rule explicitly allows it.

It is essential to emphasise that in strict subproof you cannot use
any rule which appeals to anything you proved outside of the strict sub-
proof. There are exceptions, e.g., the OE rule below. These rules will
explicitly state that they can be used inside strict subproofs and cite
lines outside the strict subproof. This restriction is essential, otherwise
we would get terrible results. For example, we could provide the fol-
lowing proof to vindicate 4 .". OA4:

1|4

2 _|:|

3 A incorrect use of R 1
4 | o4 ol 2-3

This is not a legitimate proof, because at line 3 we appealed to line 1,
even though line 1 comes before the beginning of the strict subproof at
line 2.

We said above that a strict subproof allows us to reason about ar-
bitrary alternate possible situations. What can be proved in a strict
subproof holds in all alternate possible situtations, and so is necessary.
This is the idea behind the OI rule. On the other hand, if we’ve assu-
med that something is necessary, we have therewith assumed that it is
true in all alternate possbile situations. Hence, we have the rule OE:
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m | Od

O
n d oE m

OE can only be applied if line m (containing 0OA) lies outside of
the strict subproof in which line z falls, and this strict subproof
is not itself part of a strict subproof not containing m.

OE allows you to assert of inside a strict subproof if you have od
outside the strict subproof. The restriction means that you can only do
this in the first strict subproof, you cannot apply the OE rule inside a
nested strict subproof. So the following is not allowed:

1 | od

O

= W N

O
9l incorrect use of OE 1

The incorrect use of OE on line 4 violates the condition, because
although line 1 lies outside the strict subproof in which line 4 falls,
the strict subproof containing line 4 lies inside the strict subproof be-
ginning on line 2 which does not contain line 1.

Let’s begin with an example.

my|
oB

m}
4

B

ANB

N o W N

o(4 A B)

oE1
oE 2
AL 4,5
ol 3-7
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We can also mix regular subproofs and strict subproofs:

1 |o4d—-B)

2 o4

3 ]

4 4 OE m

5 A—B ©OE1

6 —E4,5
7 oB

8 | 04— OB —12-7

This is called the Distribution Rule, because it tells us that O ‘distributes’
over —.

The rules OI and OE look simple enough, and indeed K is a very
simple system! But K is more powerful than you might have thought.
You can prove a fair few things in it.

39.2 Possibility

In the last subsection, we looked at all of the basic rules for K. But you
might have noticed that all of these rules were about necessity, 0, and
none of them were about possibility, ¢. That’s because we can define
possibility in terms of necessity:

l od =df —-O0-d

In other words, to say that o is possibly true, is to say that o is not
necessarily false. As a result, it isn’t really essential to add a ¢, a special
symbol for possibility, into system K. Still, the system will be much
easier to use if we do, and so we will add the following definitional
rules:
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m | —-O-d

od Defo m
m | oA

-0-d Def<> m

Importantly, you should not think of these rules as any real addition
to K: they just record the way that ¢ is defined in terms of O.

If we wanted, we could leave our rules for K here. But it will be
helpful to add some Modal Conversion rules, which give us some more
ways of flipping between 0O and ¢:

m | -OA

o=l MCm
m | O-d

-0d MC m
m | o

O-d MC m
m O-oA

-od  MCm

These Modal Conversion Rules are also no addition to the power
of K, because they can be derived from the basic rules, along with the
definition of <.

In system K, using Def& (or the modal conversion rules), one can
prove &4 < —0-A. When laying out system K, we started with O as
our primitive modal symbol, and then defined ¢ in terms of it. But if we
had preferred, we could have started with ¢ as our primitive, and then
defined O as follows: O =4 =O-dl. There is, then, no sense in which
necessity is somehow more fundamental than possibility. Necessity and
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possibility are exactly as fundamental as each other.

39.3 System T

So far we have focussed on K, which is a very simple modal system.
K is so weak that it will not even let you prove o from Od. But if we
are thinking of O as expressing necessity, then we will want to be able to
make this inference: if o is necessarily true, then it must surely be ¢rue!

This leads us to a new system, T, which we get by adding the
following rule to K:

m | Od

n | A RT m

The line # on which rule RT is applied must zot lie in a strict
subproof that begins after line m.

The restriction on rule T is in a way the opposite of the restriction
on OE: you can only use OE in a nested strict subproof, but you cannot
use T in a nested strict subproof.

We can prove things in T which we could not prove in K, e.g.,
04 — A.

39.4 System S4

T allows you to strip away the necessity boxes: from 09, you may infer
of. But what if we wanted to add extra boxes? That is, what if we
wanted to go from Od to OOs? Well, that would be no problem, if we
had proved Od by applying OI to a strict subproof of 9 which itself
does not use OE. In that case, o is a tautology, and by nesting the strict
subproof inside another strict subproof and applying OI again, we can



39.4. SYSTEM S4 283

prove 009, For example, we could prove o0O(P — P) like this:

P R3

P—-P —1 34
oP —-P) oOI2-5

N OO g A W N+

oo(P — P) ol 1-6

But what if we didn’t prove Od in this restricted way, but used OE inside
the strict subproof of of. If we put that strict subproof inside another
strict subproof, the requirement of rule OE to not cite a line containing
Od which lies in another strict subproof that has not yet concluded, is
violated. Or what if 04 were just an assumption we started our proof
with? Could we infer 009 then? Not in T, we couldn’t. And this
might well strike you as a limitation of T, at least if we are reading O as
expressing necessity. It seems intuitive that if of is necessarily true, then
it couldn’t have failed to be necessarily true.

This leads us to another new system, S4, which we get by adding
the following rule to T:

m | Od
O

n od R4m

Note that R4 can only be applied if line m (containing 04) lies
outside of the strict subproof in which line # falls, and this strict
subproof is not itself part of a strict subproof not containing n.

Rule R4 looks just like OE, except that instead of yielding o from
Od it yields Od inside a strict subproof. The restriction is the same,
however: R4 allows us to “import” Odl into a strict subproof, but not
into a strict subproof itself nested inside a strict subproof. However, if
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that is necessary, an additional application of R4 would have the same
result.

Now we can prove even more results. For instance:

1 Y|

2 O

3 ’E‘I R4 1

4 oo4 ol 2-3
5|0d—-oo0d4 -—I1-6

Similarly, we can prove ¢4 — <&4. This shows us that as well as
letting us add extra boxes, S4 lets us delete extra diamonds: from O Od,
you can always infer ¢of.

39.5 System S5

In S4, we can always add a box in front of another box. But S4 does
not automatically let us add a box in front of a diamond. That is, S4
does not generally permit the inference from ¢of to O¢d. But again,
that might strike you as a shortcoming, at least if you are reading O
and ¢ as expressing necessity and possibility. It seems intuitive that if of
is possibly true, then it couldn’t have failed to be possibly true.

This leads us to our final modal system, S5, which we get by adding
the following rule to S4:

m | -OdA

O
n O R5 m

Rule R5 can only be applied if line m (containing —Od) lies
outside of the strict subproof in which line # falls, and this strict
subproof is not itself part of a strict subproof not containing
line m.
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This rule allows us to show, for instance, that ¢04 rg5 OA4:

1 |oo4d

-0-04 Defo 1

R5 3
O-o4 ol 4-5
1 -E 2,6

[C TN B SA N N CCR, o
]l (O
a
SN

DA IP 3-7

So, as well as adding boxes in front of diamonds, we can also delete
diamonds in front of boxes.

We got S5 just by adding the rule R5 rule to S4. In fact, we could
have added rule R5 to T alone, and leave out rule R4). Everything we
can prove by rule R4 can also be proved using RT together with R5.
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For instance, here is a proof that shows 04 +g5 004 without using R4:

© O NN Y N

O = T
w N = o

14

mp|

o-04

-04

-0-04

mp|

ooAd

RT 2
-E1,3
-1 2-4

R5 7

al 8-9
R5 5

-E 10, 11
IP 7-12
al 6-13

S5 is strictly stronger than S4: there are things which can be proved in
S5, but not in S4 (e.g., ©04 — 0O4).

The important point about S5 can be put like this: if you have a
long string of boxes and diamonds, in any combination whatsoever, you
can delete all but the last of them. So for example, ¢06G0O06O4 can
be simplified down to just O4.

Exercicios

A. Provide proofs for the following:

Ll

O(A A B)rg OAAOB
oA AOB g O(A A B)
oAvoBtrg 0(4V B)
0(4 < B) +x 04 < OB
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B. Provide proofs for the following (without using Modal Conversion!):

—-04 +rg O-A
O—-4 g 04
-OA kg O-4
4. 04 +g 7OA

@ P -

C. Provide proofs of the following (and now feel free to use Modal
Conversion!):

1. 0(4 - B),0Arx OB
2. 04 +g =04
3. 7O Arg 04

D. Provide proofs for the following:

1. P+t OP
2. +t (AAB)V (-OA4V —-OB)

E. Provide proofs for the following:

1. 0(o4 — B),0(mB — (C),04 +g4 0OC
2. OA+ge O(OA V B)
3. OO0A gy OA

F. Provide proofs in S5 for the following:

1. ~O0-4, OB ks D((}A A OB)
2. Arss OCA
3. 004 rss OA



Semantica
ara a LM

So far, we have focussed on laying out various systems of Natural De-
duction for ML. Now we will look at the semantics for ML. A semantics
for a language is a method for assigning truth-values to the sentences
in that language. So a semantics for ML is a method for assigning
truth-values to the sentences of ML.

40.1 Interpretations of ML

The big idea behind the semantics for ML is this. In ML, sentences
are not just true or false, full stop. A sentence is true or false at a given
possible world, and a single sentence may well be true at some worlds
and false at others. We then say that Od is true iff of is true at every
world, and ¢df is true iff o is true at some world.

That’s the big idea, but we need to refine it and make it more pre-
cise. To do this, we need to introduce the idea of an interpretation of
ML. The first thing you need to include in an interpretation is a collec-
tion of possible worlds. Now, at this point you might well want to ask:
What exactly is a possible world? The intuitive idea is that a possible
world is another way that this world could have been. But what exac-
tly does that mean? This is an excellent philosophical question, and
we will look at it in a lot of detail later. But we do not need to worry
too much about it right now. As far as the formal logic goes, possible
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worlds can be anything you like. All that matters is that you supply each
interpretation with a non-empty collection of things labelled POSSIBLE
WORLDS.

Once you have chosen your collection of possible worlds, you need
to find some way of determining which sentences of ML are true at
which possible worlds. To do that, we need to introduce the notion
of a valuation function. Those of you who have studied some maths
will already be familiar with the general idea of a function. But for
those of you who haven’t, a function is a mathematical entity which
maps arguments to values. That might sound a little bit abstract, but
some familiar examples will help. Take the function x + 1. This is a
function which takes in a number as argument, and then spits out the
next number as value. So if you feed in the number 1 as an argument,
the function x + 1 will spit out the number 2 as a value; if you feed in 2,
it will spit out 3; if you feed in 3, it will spit out 4 ... Or here is another
example: the function x + y. This time, you have to feed two arguments
into this function if you want it to return a value: if you feed in 2 and 3
as your arguments, it spits out 5; if you feed in 1003 and 2005, it spits
out 3008; and so on.

A valuation function for ML takes in a sentence and a world as
its arguments, and then returns a truth-value as its value. So if v is a
valuation function and w is a possible world, v, () is whatever truth-
value v maps o and w to: if v, (d) = F, then d is false at world w on
valuation v; if v, () = T, then o is true at world w on valuation v.

These valuation functions are allowed to map any atomic sentence
to any truth-value at any world. But there are rules about which truth-
values more complex sentences get assigned at a world. Here are the
rules for the connectives from TFL:

(1) v(=st) = T iff: vy(A) = F

(2) v(AAB)=T iff: vp(A) =T and v,((B) =T

(3) V(A vV B)=T iff: v(d) =T or v,(%B) =T, or both
(4) V(A — B) = T iff: vy(A) = F or v,(B) = T, or both

(5) V(A & B) =T iff: vy(A) = T and v,(B) = T, or vu(d) = F
and v, (B) = F

So far, these rules should all look very familiar. Essentially, they all
work exactly like the truth-tables for TFL. The only difference is that
these truth-table rules have to be applied over and over again, to one
world at a time.
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But what are the rules for the new modal operators, 0 and ¢? The
most obvious idea would be to give rules like these:

ve(Osd) = T iff Yo' (v () = T')
Vp(Od) = T iff Jw’' (v (d) =T)

This is just the fancy formal way of writing out the idea that Od is true
at w just in case o is true at every world, and ¢ is true at w just in
case o is true at some world.

However, while these rules are nice and simple, they turn out not
to be quite as useful as we would like. As we mentioned, ML is meant
to be a very flexible tool. It is meant to be a general framework for
dealing with lots of different kinds of necessity. As a result, we want
our semantic rules for 0 and ¢ to be a bit less rigid. We can do this by
introducing another new idea: accessibility relations.

An accessibility relation, R, is a relation between possible worlds.
Roughly, to say that Rwiwy (in English: world w, accesses world wy) is
to say that wg is possible relative to wy. In other words, by introducing
accessibility relations, we open up the idea that a given world might be
possible relative to some worlds but not others. This turns out to be a
very fruitful idea when studying modal systems. We can now give the
following semantic rules for O and ¢:

(6) v, (Odd) = T iff Vwg(Rwiwg — vy, () =T)
(7) Vi, (Od) = T iff Jwo(Rwiwg A vy, () = T)

Or in plain English: Od is true in world w iff o is true in every world
that is possible relative to wq; and ¢d is true in world w; iff o is true
in some world that is possible relative to wj.

So, there we have it. An interpretation for ML consists of three
things: a collection of possible worlds, W; an accessibility relation, R;
and a valuation function, v. The collection of ‘possible worlds’ can
really be a collection of anything you like. It really doesn’t matter, so
long as W isn’t empty. (For many purposes, it is helpful just to take a
collection of numbers to be your collection of worlds.) And for now,
at least, R can be any relation between the worlds in W that you like.
It could be a relation which every world in W bears to every world in
W, or one which no world bears to any world, or anything in between.
And lastly, v can map any atomic sentence of ML to any truth-value at
any world. All that matters is that it follows the rules (1)—(7) when it
comes to the more complex sentences.
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Let’s look at an example. It is often helpful to present interpretati-
ons of ML as diagrams, like this:

Co .

A -4

-B B

Here is how to read the interpretation off from this diagram. It contains
just two worlds, 1 and 2. The arrows between the worlds indicate the
accessibility relation. So 1 and 2 both access 1, but neither 1 nor 2
accesses 2. The boxes at each world let us know which atomic sentences
are true at each world: 4 is true at 1 but false at 2; B is false at 1 but
true at 2. You may only write an atomic sentence or the negation of
an atomic sentence into one of these boxes. We can figure out what
truth-values the more complex sentences get at each world from that.
For example, on this interpretation all of the following sentences are
true at wq:

AAN-B,B— A, 0A, O0-B

If you don’t like thinking diagrammatically, then you can also present
an interpretation like this:

w: 1,2
R: (1,1),(2,1)
vi(A) = T,vo(B) = F,vy(A) = F,ve(B) = T

You will get the chance to cook up some interpretations of your own
shortly, when we start looking at counter-interpretations.

40.2 A Semantics for System K

We can now extend all of the semantic concepts of TFL to cover ML:
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> 91,49, ...9d, .". € is MODALLY VALID iff there is no world
in any interpretation at which oy, oy, ... s, are all true
and G is false.

> o is a MODAL TRUTH iff & is true at every world in every
interpretation.

> o is a MODAL CONTRADICTION iff o is false at every world
in every interpretation.

> 9l is MODALLY SATISFIABLE iff ¢f is true at some world in
some interpretation.

(From now on we will drop the explicit ‘modal’ qualifications, since
they can be taken as read.)

We can also extend our use of . However, we need to add subs-
cripts again, just as we did with . So, when we want to say that
A, Ag, ... d, 7. B is valid, we will write: oAy, Ao, ... d, Ex 6.

Let’s get more of a feel for this semantics by presenting some
counter-interpretations. Consider the following (false) claim:

-4 kg ~CA

In order to present a counterinterpretation to this claim, we need to
cook up an interpretation which makes —4 true at some world w, and
-0 A false at w. Here is one such interpretation, presented diagramma-
tically:

-4 A

It is easy to see that this will work as a counter-interpretation for our
claim. First, =4 is true at world 1. And second, =<4 is false at 1: 4
is true at 2, and 2 is accessible from 1. So there is some world in this
interpretation where =4 is true and ~<¢4 is false, so it is not the case
that =4 kg = OA.

Why did we choose the subscript K? Well, it turns out that there
is an important relationship between system K and the definition of
validity we have just given. In particular, we have the following two
results:
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> If o1, Ao, ... A, rk 6, then 1, A, ... A, Ex 6
> If Ay, Ay, ..., Ex 6, then Ay, Ay, ... d, rk 6

The first result is known as a soundness result, since it tells us that the
rules of K are good, sound rules: if you can vindicate an argument by
giving a proof for it using system K, then that argument really is valid.
The second result is known as a completeness result, since it tells us that
the rules of K are broad enough to capture all of the valid arguments:
if an argument is valid, then it will be possible to offer a proof in K
which vindicates it.

Now, it is one thing to state these results, quite another to prove
them. However, we will not try to prove them here. But the idea behind
the proof of soundness will perhaps make clearer how strict subproofs
work.

In a strict subproof, we are not allowed to make use of any infor-
mation from outside the strict subproof, except what we import into
the strict subproof using OE. If we’ve assumed or proved Od, by OE,
we can used of inside a strict subproof. And in K, that is the only
way to import a formula into a strict subproof. So everything that can
be proved inside a strict subproof must follow from formulas & where
outside the strict subproof we have Odl. Let’s imagine that we are rea-
soning about what’s true in a possible world in some interpretation. If
we know that Od is true in that possible world, we know that o is true
in all accessible worlds. So, everything proved inside a strict subproof
is true in all accessible possible worlds. That is why OI is a sound rule.

40.3 A Semantics for System T

A few moments ago, we said that system K is sound and complete.
Where does that leave the other modal systems we looked at, namely
T, S4 and S5? Well, they are all unsound, relative to the definition of
validity we gave above. For example, all of these systems allow us to
infer 4 from 04, even though 04 kg 4.

Does that mean that these systems are a waste of time? Not at all!
These systems are only unsound relative to the definition of validity we
gave above. (Or to use symbols, they are unsound relative to Fg.) So
when we are dealing with these stronger modal systems, we just need
to modify our definition of validity to fit. This is where accessibility
relations come in really handy.
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When we introduced the idea of an accessibility relation, we said
that it could be any relation between worlds that you like: you could
have it relating every world to every world, no world to any world,
or anything in between. That is how we were thinking of accessibility
relations in our definition of Fg. But if we wanted, we could start putting
some restrictions on the accessibility relation. In particular, we might
insist that it has to be reflexive:

> YwRww

In English: every world accesses itself. Or in terms of relative pos-
sibility: every world is possible relative to itself. If we imposed this
restriction, we could introduce a new consequence relation, Fr, as fol-
lows:

oy, dy, ... d, e 6 iff there is no world in any interpretation
which has a reflexive accessibility relation, at which o, do, ... d,
are all true and 6 is false

We have attached the T subscript to F because it turns out that sys-
tem T is sound and complete relative to this new definition of validity:

> If dq,dy, ..., b1 6, then sd1, sy, ... d, ET 6
> If dqi,dy, ..., T 6, then A1,y ... A, +1 6

As before, we will not try to prove these soundness and completeness
results. However, it is relatively easy to see how insisting that the ac-
cessibility relation must be reflexive will vindicate the RT rule:

m | Od

dq RT m

To see this, just imagine trying to cook up a counter-interpretation
to this claim:
oA e A

We would need to construct a world, w, at which 09 was true, but of
was false. Now, if Od is true at w, then 9 must be true at every world
w accesses. But since the accessibility relation is reflexive, w accesses
w. So o must be true at w. But now 9 must be true and false at w.
Contradiction!
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40.4 A Semantics for S4

How else might we tweak our definition of validity? Well, we might also
stipulate that the accessibility relation has to be transitive:

> YwiVwoVws((Rwiwy A Rwsws) — Rwiws)

In English: if w; accesses wy, and w9 accesses w3, then w; accesses ws.
Or in terms of relative possibility: if w3 is possible relative to wy, and
wy is possible relative to w;, then ws is possible relative to w;. If we
added this restriction on our accessibility relation, we could introduce
a new consequence relation, ksy, as follows:

o1, dy, ... d, Ess4 6 iff there is no world in any interpretation
which has a reflexive and transitive accessibility relation, at which
Ay, Ay, ..., are all true and 6 is false

We have attached the S4 subscript to £ because it turns out that
system S4 is sound and complete relative to this new definition of vali-
dity:

> If oy, Ao, ..., Fs4 B, then 1, Ay, ... 9, Esy 6
> If oy, Ao, ..., Esq B, then A1, Ao, ..., kg 6

As before, we will not try to prove these soundness and completeness
results. However, it is relatively easy to see how insisting that the ac-
cessibility relation must be transitive will vindicate the S4 rule:

m | Od
|

od R4m

The idea behind strict subproofs, remember, is that they are ways
to prove things that must be true in all accessible worlds. So the R4
rule means that whenever Od is true, O must also be true in every
accessible world. In other words, we must have 09 kg4 OOdA.

To see this, just imagine trying to cook up a counter-interpretation
to this claim:

Od gy OOA
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We would need to construct a world, wy, at which 0! was true, but
ood was false. Now, if ood is false at wq, then w; must access some
world, w9, at which Od is false. Equally, if Od is false at wy, then wy
must access some world, w3, at which o is false. We just said that w;
accesses wg, and wy accesses w3. So since we are now insisting that the
accessibility relation be transitive, w1 must access w3. And as Od is
true at wy, and w;s is accessible from w1, it follows that & must be true
at w3. So d is true and false at w3. Contradiction!

40.5 A Semantics for S5

Let’s put one more restriction on the accessibility relation. This time,
let’s insist that it must also be symmetric:

> YwiYwy(Rwiwy — Rwowy)

In English: if w; accesses wy, then wy accesses w;. Or in terms of
relative possibility: if wy is possible relative to w1, then w; is possible
relative to wy. Logicians call a relation that is reflexive, symmetric, and
transitive an equivalence relation. We can now define a new consequence
relation, kg5, as follows:

di,dy,...d, Ess B iff there is no world in any interpreta-
tion whose accessibility relation is an equivalence relation, at which
Ay, Ao, ..., are all true and 6 is false

We have attached the S5 subscript to k because it turns out that
system S5 is sound and complete relative to this new definition of vali-
dity:

> If A1, Ay, ..., tss 6, then A1, Ay, ... A, Es5 6

> If A1, Ay, ..., Ess 6, then A1, o, ... A, Fs5 6
As before, we will not try to prove these soundness and completeness
results here. However, it is relatively easy to see how insisting that the

accessibility relation must be an equivalence relation will vindicate the
R5 rule:
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m | -OA
O

-04 Rbm

The rule says that if of is not necessary, i.e., false in some accessible
world, it is also not necessary in any accessible prossible world, i.e., we
have -0 +s5 O-0OdA.

To see this, just imagine trying to cook up a counter-interpretation
to this claim:

—-0d4 kg5 O-OA

We would need to construct a world, w;, at which —0Od was true, but
O-09 was false. Now, if —O¢ is true at wp, then w; must access some
world, wy, at which o is false. Equally, if O—-Od is false at wj, then w,
must access some world, w3, at which —0Od is false. Since we are now
insisting that the accessibility relation is an equivalence relation, and
hence symmetric, we can infer that w3 accesses w;. Thus, w3 accesses
w1, and w; accesses wg. Again, since we are now insisting that the
accessibility relation is an equivalence relation, and hence transitive,
we can infer that w3 accesses wy. But earlier we said that —0Od is false
at w3, which implies that o is true at every world which w3 accesses.
So d is true and false at wy. Contradiction!

In the definition of kg5, we stipulated that the accessibility relation
must be an equivalence relation. But it turns out that there is another
way of getting a notion of validity fit for S5. Rather than stipulating
that the accessibility relation be an equivalence relation, we can instead
stipulate that it be a universal relation:

> Yw1YwoRwiwy

In English: every world accesses every world. Or in terms of relative
possibility: every world is possible relative to every world. Using this
restriction on the accessibility relation, we could have defined kg5 like
this:

d1,dy, ... d, ks5 6 iff there is no world in any interpretation
which has a universal accessibility relation, at which o1, do, ... d,
are all true and 6 is false.
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If we defined kg5 like this, we would still get the same soundness
and completeness results for S5. What does this tell us? Well, it means
that if we are dealing with a notion of necessity according to which
every world is possible relative to every world, then we should use S5.
What is more, most philosophers assume that the notions of necessity
that they are most concerned with, like logical necessity and metaphysical
necessity, are of exactly this kind. So S5 is the modal system that most
philosophers use most of the time.

Exercicios

A. Present counter-interpretations to the following false claims:
=P kg =OP

o(P v Q) sk oPvoQ

FK —||:|(A A —|A)

04 eg A

B. Present counter-interpretations to the following false claims:

1. OCAEgy OOA
2. 0A,0(0A — B)ksy OB

B p e

C. Present counter-interpretations to the following false claims:

1. oM — 0),OM et O
2. 04 kr ood

Further reading

Modal logic is a large subfield of logic. We have only scratched the
surface. If you want to learn more about modal logic, here are some
textbooks you might consult.

> Hughes, G. E., & Cresswell, M. J. (1996). 4 New Introduction to
Modal Logic, Oxford: Routledge.

> Priest, G. (2008). An Introduction to Non-Classical Logic, 2nd ed.,
Cambridge: Cambridge University Press.

> Garson, J. W. (2013). Modal Logic for Philosophers, 2nd ed., Cam-
bridge: Cambridge University Press.

None of these authors formulate their modal proof systems in quite
the way we did, but the closest formulation is given by Garson.
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CAPITULO 41

Formas
normais e
expressividade

41.1 Disjunctive Normal Form

Sometimes it is useful to consider sentences of a particularly simple
form. For instance, we might consider sentences in which — only atta-
ches to atomic sentences, or those which are combinations of atomic
sentences and negated atomic sentences using only A. A relatively ge-
neral but still simple form is that where a sentence is a disjunction of
conjunctions of atomic or negated atomic sentences. When such a sen-
tence is constructed, we start with atomic sentences, then (perhaps) at-
tach negations, then (perhaps) combine using A, and finally (perhaps)
combine using V.

Let’s say that a sentence is in DISJUNCTIVE NORMAL FORM iff it
meets all of the following conditions:

(DNF1) No connectives occur in the sentence other than negations, con-
junctions and disjunctions;

(DNF2) Every occurrence of negation has minimal scope (i.e. any ‘=’ is
immediately followed by an atomic sentence);

(pNF3) No disjunction occurs within the scope of any conjunction.

300
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So, here are are some sentences in disjunctive normal form:

A

(AAN=-BACQC)
(AAB)V(AA=B)
(AANB)V(AANBACA-DA=-E)
AV (C AN—=Pygy ANPy33ANQ)V —B

Note that we have here broken one of the maxims of this book and zem-
porarily allowed ourselves to employ the relaxed bracketing-conventions
that allow conjunctions and disjunctions to be of arbitrary length.
These conventions make it easier to see when a sentence is in disjunc-
tive normal form. We will continue to help ourselves to these relaxed
conventions, without further comment.

To further illustrate the idea of disjunctive normal form, we will
introduce some more notation. We write ‘+9’ to indicate that o is
an atomic sentence which may or may not be prefaced with an occur-
rence of negation. Then a sentence in disjunctive normal form has the
following shape:

(i A AEA)V (A AL AV LV (Ed g A A 2dy)

We now know what it is for a sentence to be in disjunctive normal form.
The result that we are aiming at is:

Disjunctive Normal Form Theorem. For any sentence, there
is a logically equivalent sentence in disjunctive normal form.

Henceforth, we will abbreviate ‘Disjunctive Normal Form’ by
‘DNF”.

41.2 Proof of DNF Theorem via truth
tables

Our first proof of the DNF Theorem employs truth tables. We will first
illustrate the technique for finding an equivalent sentence in DNF, and
then turn this illustration into a rigorous proof.

Let’s suppose we have some sentence, S, which contains three ato-
mic sentences, ‘4’, ‘B’ and ‘C’. The very first thing to do is fill out a
complete truth table for §. Maybe we end up with this:
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R IR RS R R S
R NN N R N
SRR RS FoY
Ha s s o

F

As it happens, § is true on four lines of its truth table, namely lines 1,
3, 7 and 8. Corresponding to each of those lines, we will write down
four sentences, whose only connectives are negations and conjunctions,
where every negation has minimal scope:

1. ‘ANBAC which is true on line 1 (and only then)
2. ‘AN-BAC which is true on line 3 (and only then)
3. “AA-=BAC which is true on line 7 (and only then)
4. “AN=-BA-C which is true on line 8 (and only then)

We now combine all of these conjunctions using V, like so:
(AANBAC)VAAN-BAC)V(=mAA-BAC)V(mAA-BA-C)

This gives us a sentence in DNF which is true on exactly those lines
where one of the disjuncts is true, i.e. it is true on (and only on) lines
1, 3, 7, and 8. So this sentence has exactly the same truth table as S.
So we have a sentence in DNF that is logically equivalent to §, which
is exactly what we wanted!

Now, the strategy that we just adopted did not depend on the spe-
cifics of §; it is perfectly general. Consequently, we can use it to obtain
a simple proof of the DNF Theorem.

Pick any arbitrary sentence, S, and let o1,...,d, be the atomic
sentences that occur in §. To obtain a sentence in DNF that is logi-
cally equivalent §, we consider §’s truth table. There are two cases to
consider:

1. 8 is false on every line of its truth table. Then, § is a contradiction.
In that case, the contradiction (41 A—sfy) is in DNF and logically
equivalent to S.

2. 8 is true on at least one line of its truth table. For each line i of the
truth table, let %; be a conjunction of the form

(1 AL A xy)
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where the following rules determine whether or not to include a
negation in front of each atomic sentence:

Sy is a conjunct of B, iff o, is true on line i

-9, is a conjunct of %B; iff d,, is false on line i

Given these rules, 9; is true on (and only on) line i of the truth
table which considers all possible valuations of dy,...,d, (i.e.
§’s truth table).

Next, let iy, d9, ..., i be the numbers of the lines of the truth
table where § is true. Now let 9 be the sentence:

By VB, V...V By,

Since § is true on at least one line of its truth table, < is indeed
well-defined; and in the limiting case where § is true on exactly
one line of its truth table, @ is just %;,, for some .

By construction, @ is in DNF. Moreover, by construction, for
each line i of the truth table: § is true on line 7 of the truth table
iff one of @’s disjuncts (namely, %B;) is true on, and only on, line
i. Hence § and © have the same truth table, and so are logically
equivalent.

These two cases are exhaustive and, either way, we have a sentence in
DNF that is logically equivalent to §S.

So we have proved the DNF Theorem. Before we say any more,
though, we should immediately flag that we are hereby returning to
the austere definition of a (TFL) sentence, according to which we can
assume that any conjunction has exactly two conjuncts, and any dis-
junction has exactly two disjuncts.

41.3 Conjunctive Normal Form

So far in this chapter, we have discussed disjunctive normal form. It
may not come as a surprise to hear that there is also such a thing as
conjunctive normal form (CNF).

The definition of CNF is exactly analogous to the definition of DNF.
So, a sentence is in CNF iff it meets all of the following conditions:

(cNF1) No connectives occur in the sentence other than negations, con-
junctions and disjunctions;
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(cNrF2) Every occurrence of negation has minimal scope;
(cNrF3) No conjunction occurs within the scope of any disjunction.

Generally, then, a sentence in CNF looks like this
(1 V... V) A (A1 Voo Vrd) A A (i VLV Edy)

where each o; is an atomic sentence.
We can now prove another normal form theorem:

Conjunctive Normal Form Theorem. For any sentence, there
is a logically equivalent sentence in conjunctive normal form.

Given a TFL sentence, S, we begin by writing down the complete
truth table for §.

If S is true on every line of the truth table, then § and (s; V —d;)
are logically equivalent.

If S is false on at least one line of the truth table then, for every line
on the truth table where § is false, write down a disjunction (xs1 V...V
+9,) which is false on (and only on) that line. Let 6 be the conjunction
of all of these disjuncts; by construction, € is in CNF and § and € are
logically equivalent.

Exercicios

A. Consider the following sentences:

. (4—- -=B)

-(4 & B)

. (m4AV =(4 A B))

. (4> B)AA4— C)

. (5(4V B) & ((-C A—=A) — —=B))
. (=(4 A =B) —> C)A=(4 A D))

w M

YO

For each sentence, find a logically equivalent sentence in DNF and one
in CNF.

41.4 The expressive adequacy of TFL

Of our connectives, - attaches to a single sentences, and the others all
combine exactly two sentences. We may also introduce the idea of an
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n-place connective. For example, we could consider a three-place con-
nective, ‘0’, and stipulate that it is to have the following characteristic
truth table:

(4, B, C)

A
g
AT A0

eI B B B B S

Probably this new connective would not correspond with any natural
English expression (at least not in the way that ‘A’ corresponds with
‘and’). But a question arises: if we wanted to employ a connective with
this characteristic truth table, must we add a new connective to TFL?
Or can we get by with the connectives we already have?

Let us make this question more precise. Say that some connectives
are JOINTLY EXPRESSIVELY ADEQUATE iff, for any possible truth table,
there is a sentence containing only those connectives with that truth
table.

The general point is, when we are armed with some jointly expres-
sively adequate connectives, no characteristic truth table lies beyond
our grasp. And in fact, we are in luck.

Expressive Adequacy Theorem. The connectives of TFL are
jointly expressively adequate. Indeed, the following pairs of con-
nectives are jointly expressively adequate:

1. ‘=’ and ‘V’
2. ‘=7 and ‘A’
3. ‘_|, and ‘H’

Given any truth table, we can use the method of proving the DNF
Theorem (or the CNF Theorem) via truth tables, to write down a
scheme which has the same truth table. For example, employing the
truth table method for proving the DNF Theorem, we find that the
following scheme has the same characteristic truth table as (4, B, C),
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above:
(AANBA=C)VAAN-BAC)V (=AABA-C)

It follows that the connectives of TFL are jointly expressively adequate.
We now prove each of the subsidiary results.

Subsidiary Result 1: expressive adequacy of =’ and Vv°. Observe that
the scheme that we generate, using the truth table method of proving
the DNF Theorem, will only contain the connectives ‘=°, ‘A’ and ‘V’.
So it suffices to show that there is an equivalent scheme which contains
only ‘=’ and ‘V’. To show do this, we simply consider that

(AARB) and (=4 V -RB)

are logically equivalent.
Subsidiary Result 2: expressive adequacy of =’ and ‘A\’. Exactly as in
Subsidiary Result 1, making use of the fact that

(AVvRB) and (= A -B)

are logically equivalent.
Subsidiary Result 3: expressive adequacy of =’ and —’. Exactly as in
Subsidiary Result 1, making use of these equivalences instead:

(AVvRB) and (-d — B)
(AANB) and —(d — —=%B)

Alternatively, we could simply rely upon one of the other two subsidiary
results, and (repeatedly) invoke only one of these two equivalences.

In short, there is never any need to add new connectives to TFL.
Indeed, there is already some redundancy among the connectives we
have: we could have made do with just two connectives, if we had been
feeling really austere.

41.5 Individually expressively adequate
connectives

In fact, some two-place connectives are individually expressively ade-
quate. These connectives are not standardly included in TFL, since
they are rather cumbersome to use. But their existence shows that, if
we had wanted to, we could have defined a truth-functional language
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that was expressively adequate, which contained only a single primitive
connective.

The first such connective we will consider is ‘T’, which has the fol-
lowing characteristic truth table.

EXE:

oo R
RS )
e B ]

This is often called ‘the Sheffer stroke’, after Henry Sheffer, who used
it to show how to reduce the number of logical connectives in Rus-
sell and Whitehead’s Principia Mathematica." (In fact, Charles Sanders
Peirce had anticipated Sheffer by about 30 years, but never published
his results.)® It is quite common, as well, to call it ‘nand’, since its
characteristic truth table is the negation of the truth table for ‘A’.

‘P’ is expressively adequate all by itself.

«_

The Expressive Adequacy Theorem tells us that ‘=’ and ‘v’ are
jointly expressively adequate. So it suffices to show that, given any
scheme which contains only those two connectives, we can rewrite it as
a logically equivalent scheme which contains only I’. As in the proof
of the subsidiary cases of the Expressive Adequacy Theorem, then, we
simply apply the following equivalences:

-4 and (4 Td)
(AveB) and ((ATd)T(BTR)

to the Subsidiary Result 1.
Similarly, we can consider the connective ‘|’

1Sheffer, ‘A Set of Five Independent Postulates for Boolean Algebras, with
application to logical constants,” (1913, Transactions of the American Mathemati-
cal Society 14.4)

2See Peirce, ‘A Boolian Algebra with One Constant’, which dates to ¢.1880;
and Peirce’s Collected Papers, 4.264—5.
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EXE:

oo =R
o9
— o |

This is sometimes called the ‘Peirce arrow’ (Peirce himself called it
‘ampheck’). More often, though, it is called ‘nor’, since its characteristic

b

truth table is the negation of ‘V’, that is, of ‘neither ... nor...".

‘|’ is expressively adequate all by itself.

As in the previous result for T, although invoking the equivalences:

-1 and (A ]| oA)
(AAR) and (A ]d)]|(B|B))

and Subsidiary Result 2.

41.6 Failures of expressive adequacy

In fact, the only two-place connectives which are individually expres-
sively adequate are ‘7> and ‘|’. But how would we show this? More
generally, how can we show that some connectives are not jointly ex-
pressively adequate?

The obvious thing to do is to try to find some truth table which we
cannot express, using just the given connectives. But there is a bit of an
art to this.

To make this concrete, let’s consider the question of whether ‘v’ is
expressively adequate all by itself. After a little reflection, it should be
clear that it is not. In particular, it should be clear that any scheme
which only contains disjunctions cannot have the same truth table as
negation, i.e.:

dad | -d
T| F
F| T

The intuitive reason, why this should be so, is simple: the top line of
the desired truth table needs to have the value False; but the top line of
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any truth table for a scheme which only contains v will always be True.
The same is true for A, —, and .

V2, ‘A, ‘=’ and ‘<>’ are not expressively adequate by themsel-
ves.

In fact, the following is true:

The only two-place connectives that are expressively adequate
by themselves are ‘T’ and ‘| .

This is of course harder to prove than for the primitive connectives.
For instance, the “exclusive or” connective does not have a T in the
first line of its characteristic truth table, and so the method used above
no longer suffices to show that it cannot express all truth tables. It is
also harder to show that, e.g., ‘<’ and ‘=’ together are not expressively
adequate.
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Correcdo

In this chapter we relate TFL’s semantics to its natural deduction proof
system (as defined in Part IV). We will prove that the formal proof system
is safe: you can only prove sentences from premises from which they
actually follow. Intuitively, a formal proof system is sound iff it does not
allow you to prove any invalid arguments. This is obviously a highly
desirable property. It tells us that our proof system will never lead us
astray. Indeed, if our proof system were not sound, then we would not
be able to trust our proofs. The aim of this chapter is to prove that our
proof system is sound.

Let’s make the idea more precise. We’ll abbreviate a list of sentences
using the greek letter I' (‘gamma’). A formal proof system is SOUND
(relative to a given semantics) iff, whenever there is a formal proof of
‘6 from assumptions among I', then I' genuinely entails 6 (given that
semantics). Otherwise put, to prove that TFL’s proof system is sound,
we need to prove the following

Soundness Theorem. For any sentences I and €: if I' G,
thenI' £ 6

To prove this, we will check each of the rules of TFL’s proof system
individually. We want to show that no application of those rules ever
leads us astray. Since a proof just involves repeated application of those
rules, this will show that no proof ever leads us astray. Or at least, that
is the general idea.

To begin with, we must make the idea of ‘leading us astray’ more
precise. Say that a line of a proof is SHINY iff the assumptions on which

310
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that line depends tautologically entail the sentence on that line." To
illustrate the idea, consider the following:

1| F—>(GAH)

2| | F

31 |GaH —>E1,2
e AE 3
5|F—>G —SI12-4

Line 1 is shiny iff ¥ — (G A H) ¢ F — (G A H). You should be
easily convinced that line 1 is, indeed, shiny! Similarly, line 4 is shiny
iff F - (G AH)F ¥t G. Again, it is easy to check that line 4 is shiny.
As is every line in this TFL-proof. We want to show that this is no
coincidence. That is, we want to prove:

Shininess Lemma. Every line of every TFL-proof is shiny.

Then we will know that we have never gone astray, on any line of a
proof. Indeed, given the Shininess Lemma, it will be easy to prove the
Soundness Theorem:

Proof- Suppose I' + 6. Then there is a TFL-proof, with ‘6 appearing
on its last line, whose only undischarged assumptions are among I'. The
Shininess Lemma tells us that every line on every TFL-proof is shiny.
So this last line is shiny, i.e. I' £ 6. QED

It remains to prove the Shininess Lemma.

To do this, we observe that every line of any TFL-proof is obtained
by applying some rule. So what we want to show is that no application
of a rule of TFL’s proof system will lead us astray. More precisely, say
that a rule of inference is RULE-SOUND iff for all TFL-proofs, if we obtain
a line on a TFL-proof by applying that rule, and every earlier line in
the TFL-proof is shiny, then our new line is also shiny. What we need
to show is that every rule in TFL'’s proof system is rule-sound.

We will do this in the next section. But having demonstrated the
rule-soundness of every rule, the Shininess Lemma will follow immedi-
ately:

1The word ‘shiny’ is not standard among logicians.
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Proof Fix any line, line #, on any TFL-proof. The sentence written
on line » must be obtained using a formal inference rule which is rule-
sound. This is to say that, if every earlier line is shiny, then line z itself
is shiny. Hence, by strong induction on the length of TFL-proofs, every
line of every TFL-proof is shiny. QED

Note that this proof appeals to a principle of strong induction on the
length of TFL-proofs. This is the first time we have seen that principle,
and you should pause to confirm that it is, indeed, justified.

It remains to show that every rule is rule-sound. This is not difficult,
but it is time-consuming, since we need to check each rule individually,
and TFL'’s proof system has plenty of rules! To speed up the process
marginally, we will introduce a convenient abbreviation: ‘A;” (‘delta’)
will abbreviate the assumptions (if any) on which line i depends in our
TFL-proof (context will indicate which TFL-proof we have in mind).

l Introducing an assumption is rule-sound.

If d is introduced as an assumption on line 7, then ¢ is among A,,
and so A, £ A.

Al is rule-sound. ]

Proof. Consider any application of AI in any TFL-proof, i.e., so-
mething like:

i | oA
J | B
n | AANB  Ali,j

To show that Al is rule-sound, we assume that every line before line #
is shiny; and we aim to show that line # is shiny, i.e. that A, £ of A %.

So, let v be any valuation that makes all of A, true.

We first show that v makes d true. To prove this, note that all of
A; are among A,. By hypothesis, line i is shiny. So any valuation that
makes all of A; true makes of true. Since v makes all of A; true, it makes
o true too.

We can similarly see that ¥ makes 9 true.

So v makes ¢ true and v makes 9% true. Consequently, v makes
sl A 9B true. So any valuation that makes all of the sentences among A,
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true also makes o A 9B true. That is: line z is shiny. QED
All of the remaining lemmas establishing rule-soundness will have,
essentially, the same structure as this one did.

AE is rule-sound.

Proof. Assume that every line before line » on some TFL-proof is
shiny, and that AE is used on line n. So the situation is:

i |ANB
n | A AE i

(or perhaps with 98 on line 7 instead; but similar reasoning will apply
in that case). Let v be any valuation that makes all of A, true. Note that
all of A; are among A,. By hypothesis, line 7 is shiny. So any valuation
that makes all of A; true makes o A % true. So v makes A A B true,
and hence makes d true. So A, £ d. QED

VI is rule-sound.

We leave this as an exercise.

VE is rule-sound.

Proof. Assume that every line before line » on some TFL-proof is
shiny, and that AE is used on line z. So the situation is:

m | AVRB
i o
5
k B
L e
n |6 VE m, i—j, k-{

Let » be any valuation that makes all of A, true. Note that all of A,
are among A,. By hypothesis, line m is shiny. So any valuation that
makes A, true makes o vV % true. So in particular, » makes o V & true,
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and hence either » makes o true, or » makes % true. We now reason
through these two cases:

Case 1: v makes o true. All of A; are among A,, with the possible excep-
tion of o. Since v makes all of A, true, and also makes o true,
v makes all of A; true. Now, by assumption, line j is shiny; so
A; k6. But the sentences A; are just the sentences Aj, so A; k6.
So, any valuation that makes all of A; true makes € true. But v
is just such a valuation. So » makes € true.

Case 2: v makes B true. Reasoning in exactly the same way, considering
lines £ and /, » makes 6 true.

Either way, v makes 6 true. So A, £ 6. QED

—=E is rule-sound.

Proof Assume that every line before line » on some TFL-proof is
shiny, and that —E is used on line z. So the situation is:

i |d
J|~d
n|L -Eij

Note that all of A; and all of A; are among A,. By hypothesis, lines
i and j are shiny. So any valuation which makes all of A, true would
have to make both of and —9f true. But no valuation can do that. So no
valuation makes all of A, true. So A, £ L, vacuously. QED

X is rule-sound.

We leave this as an exercise.

=1 is rule-sound.

Proof Assume that every line before line » on some TFL-proof is
shiny, and that —I is used on line z. So the situation is:
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Let v be any valuation that makes all of A, true. Note that all of A,
are among A;, with the possible exception of o itself. By hypothesis,
line j is shiny. But no valuation can make ‘L’ true, so no valuation can
make all of A; true. Since the sentences A; are just the sentences Aj,
no valuation can make all of A; true. Since v makes all of A, true, it
must therefore make o false, and so make =g true. So A, F ~sl. QED

IP, —I, —E, <1, and <E are all rule-sound.

We leave these as exercises.
This establishes that all the basic rules of our proof system are rule-
sound. Finally, we show:

All of the derived rules of our proof system are rule-sound.

Proof. Suppose that we used a derived rule to obtain some sen-
tence, 9, on line n of some TFL-proof, and that every earlier line is
shiny. Every use of a derived rule can be replaced (at the cost of long-
windedness) with multiple uses of basic rules. That is to say, we could
have used basic rules to write 9f on some line n + k£, without introdu-
cing any further assumptions. So, applying our individual results that
all basic rules are rule-sound several times (£ +1 times, in fact), we can
see that line n + £ is shiny. Hence the derived rule is rule-sound. QED

And that’s that! We have shown that every rule—basic or
otherwise—is rule-sound, which is all that we required to establish the
Shininess Lemma, and hence the Soundness Theorem.

But it might help to round off this chapter if we repeat my informal
explanation of what we have done. A formal proof is just a sequence—
of arbitrary length—of applications of rules. We have shown that any
application of any rule will not lead you astray. It follows (by induc-
tion)that no formal proof will lead you astray. That is: our proof system
is sound.

Exercicios

A. Complete the Lemmas left as exercises in this chapter. That is, show
that the following are rule-sound:

1. VL (Hint: this is similar to the case of AE.)
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. X. (Hint: this is similar to the case of —E.)
—1. (Hint: this is similar to VE.)

—E.

IP. (Hint: this is similar to the case of —I.)

AN ol
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Notacao
simbolica

1.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes it
is called sentential logic, because it deals fundamentally with sentences.
Sometimes it is called propositional logic, on the idea that it deals fun-
damentally with propositions. We have stuck with truth-functional logic,
to emphasize the fact that it deals only with assignments of truth and
falsity to sentences, and that its connectives are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is called
predicate logic, because it allows us to apply predicates to objects. Some-
times it is called quantified logic, because it makes use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since ‘well-
formed formula’ is such a long and cumbersome phrase, they then ab-
breviate this as wjff. This is both barbarous and unnecessary (such
texts do not countenance ‘ill-formed formulas’). We have stuck with
‘formula’.

In §6, we defined sentences of TFL. These are also sometimes called
‘formulas’ (or ‘well-formed formulas’) since in TFL, unlike FOL, there
is no distinction between a formula and a sentence.

318
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Valuations. Some texts call valuations fruth-assignments, or truth-
value assignments.

Expressive adequacy. Some texts describe TFL as (ruth-
Sfunctionally complete, rather than expressively adequate.

n-place predicates. We have chosen to call predicates ‘one-place’,
‘two-place’, ‘three-place’, etc. Other texts respectively call them ‘mona-
dic’, ‘dyadic’, ‘triadic’, etc. Still other texts call them ‘unary’, ‘binary’,
‘ternary’, etc.

Names. In FOL, we have used ‘@’, ‘0’, ‘c’, for names. Some texts
call these ‘constants’. Other texts do not mark any difference between
names and variables in the syntax. Those texts focus simply on whether
the symbol occurs bound or unbound.

Domains. Some texts describe a domain as a ‘domain of discourse’,
or a ‘universe of discourse’.

1.2 Alternative symbols

In the history of formal logic, different symbols have been used at dif-
ferent times and by different authors. Often, authors were forced to
use notation that their printers could typeset. This appendix presents
some common symbols, so that you can recognize them if you encoun-
ter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘~’, and the
swung dash or tilda, ‘~” In some more advanced formal systems it is
necessary to distinguish between two kinds of negation; the distinction
is sometimes represented by using both ‘=’ and ‘~’. Older texts some-
times indicate negation by a line over the formula being negated, e.g.,
A A B. Some texts use ‘x # y’ to abbreviate ‘—x = y’.

Disjunction. The symbol ‘v’ is typically used to symbolize inclusive
disjunction. One etymology is from the Latin word ‘vel’, meaning ‘or’.
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Conjunction. Conjunction is often symbolized with the ampersand,
‘&’. The ampersand is a decorative form of the Latin word ‘et’, which
means ‘and’. (Its etymology still lingers in certain fonts, particularly in
italic fonts; thus an italic ampersand might appear as ‘&”’.) This symbol
is commonly used in natural English writing (e.g. ‘Smith & Sons’), and
so even though it is a natural choice, many logicians use a different
symbol to avoid confusion between the object and metalanguage: as
a symbol in a formal system, the ampersand is not the English word
‘&’. The most common choice now is ‘A’, which is a counterpart to the
symbol used for disjunction. Sometimes a single dot, ‘’, is used. In
some older texts, there is no symbol for conjunction at all; ‘4 and B’ is
simply written ‘AB’.

Material Conditional. There are two common symbols for the
material conditional: the arrow, ‘—’, and the hook, ‘2>’

Material Biconditional. The double-headed arrow, ‘<’, is used in
systems that use the arrow to represent the material conditional. Sys-
tems that use the hook for the conditional typically use the triple bar,
‘=’, for the biconditional.

Quantifiers. The universal quantifier is typically symbolized as a
rotated ‘A’, and the existential quantifier as a rotated, ‘E’. In some texts,
there is no separate symbol for the universal quantifier. Instead, the
variable is just written in parentheses in front of the formula that it
binds. For example, they might write ‘(x)Px’ where we would write
VxPx’.

These alternative typographies are summarised below:

negation -, ~
conjunction A, &, ¢

disjunction Vv
conditional —, D
biconditional ¢, =

universal quantifier Vx, (x)
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Sistemas
formais
alternativos

In formulating our natural deduction system, we treated certain rules
of natural deduction as basic, and others as derived. However, we could
equally well have taken various different rules as basic or derived. We
will illustrate this point by considering some alternative treatments of
disjunction, negation, and the quantifiers. We will also explain why we
have made the choices that we have.

2.1 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimination.
Such systems can then treat the VE rule as a derived rule. For they
might offer the following proof scheme:
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n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8
n+9

n+10
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=8
<
S

se‘gg) B

a4 — 86
B — 6
-6

F S| &

K4

—li—j
—I k-1

—En+3,n
“En+2, n+4
-In+3-n+5
DSm, n+6
—-En+7,n+1
-En+2,n+8

IPrn+2-n+9

So why did we choose to take VE as basic, rather than DS?* Our rea-
soning is that DS involves the use of ‘=’ in the statement of the rule. It
is in some sense ‘cleaner’ for our disjunction elimination rule to avoid
mentioning other connectives.

2.2 Alternative negation rules

Some systems take the following rule as their basic negation introduc-

tion rule:

1P.D. Magnus’s original version of this book went the other way.
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m oA
n—1 B
n -9
- -I* m—n

and a corresponding version of the rule we called IP as their basic
negation elimination rule:

m -
n—1 B
n -9
oA -E* m—n

Using these two rules, we could we could have avoided all use of the
symbol ‘L’ altogether.®> The resulting system would have had fewer
rules than ours.

Another way to deal with negation is to use either LEM or DNE
as a basic rule and introduce IP as a derived rule. Typically, in such a
system the rules are given different names, too. E.g., sometimes what
we call —=E is called LI, and what we call X is called LE.3

So why did we chose our rules for negation and contradiction?

Our first reason is that adding the symbol ‘L’ to our natural de-
duction system makes proofs considerably easier to work with. For
instance, in our system it’s always clear what the conclusion of a sub-
proof is: the sentence on the last line, e.g. L in IP or —I. In —I* and
—-E*, subproofs have two conclusions, so you can’t check at one glance
if an application of them is correct.

Our second reason is that a lot of fascinating philosophical discus-
sion has focussed on the acceptability or otherwise of indirect proof IP
(equivalently, excluded middle, i.e. LEM, or double negation elimina-
tion DNE) and explosion (i.e. X). By treating these as separate rules
in the proof system, you will be in a better position to engage with that
philosophical discussion. In particular: having invoked these rules ex-

2Again, P.D. Magnus’s original version of this book went the other way.
3The version of this book due to Tim Button goes this route and replaces
IP with LEM, which he calls TND, for “tertium non datur.”
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plicitly, it would be much easier for us to know what a system which
lacked these rules would look like.

This discussion, and in fact the vast majority of mathematical study
on applications of natural deduction proofs beyond introductory cour-
ses, makes reference to a different version of natural deduction. This
version was invented by Gerhard Gentzen in 1935 as refined by Dag
Prawitz in 1965. Our set of basic rules coincides with theirs. In other
words, the rules we use are those that are standard in philosophical and
mathematical discussion of natural deduction proofs outside of intro-
ductory courses.

2.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the rules
for VI and VE from §32, and also two CQ rule which allow us to move
from Vax—d to -3z and vice versa.4

Taking only these rules as basic, we could have derived the 3I and
3E rules provided in §32. To derive the 3l rule is fairly simple. Suppose
o contains the name ¢, and contains no instances of the variable «,
and that we want to do the following:

m | d(...c...c...)
k| Jed(...x...c...)

This is not yet permitted, since in this new system, we do not have the
3l rule. We can, however, offer the following:

m A(...c...c...)

m+1 —Jxed(...c...c...)

m+2 Ve-d(...x...c...) COm+1

m+3 -d(...c...c...) VE m+2
m+4 1L -Em+3,m
m+5 | Jxed(...x...c...) IP m + 1-m + 4

4Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Pu-
blishing Co.
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To derive the 3E rule is rather more subtle. This is because the JE
rule has an important constraint (as, indeed, does the VI rule), and we
need to make sure that we are respecting it. So, suppose we are in a
situation where we want to do the following:

m | JxdA(...x...x...)
i |94(...c...c...)
il |

k| B

where ¢ does not occur in any undischarged assumptions, or in 9, or
in Jxdd(...x...x...). Ordinarily, we would be allowed to use the JE
rule; but we are not here assuming that we have access to this rule as a
basic rule. Nevertheless, we could offer the following, more complicated
derivation:

m FaeA(...x...x...)

i A(...c...c...)

j B

k A(...c...c...) > B —Ii-j
k+1 -RB

k+2 -d(...c...c...) MTk, k+1

k+3 Ve-dA(...x...x...) VIk+2
k+4 —-Jxd(...x...x...) CQk+3

k+5 1 —|Ek+4,m

k+6 | B IPk+1-k+5

We are permitted to use VI on line £+ 3 because ¢ does not occur in any
undischarged assumptions or in 9. The entries on lines £ +4 and £ +1
contradict each other, because ¢ does not occur in Jed(...x ... x...).
Armed with these derived rules, we could now go on to derive the
two remaining CQ rules, exactly as in §36.
So, why did we start with all of the quantifier rules as basic, and
then derive the CQ rules?
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Our first reason is that it seems more intuitive to treat the quantifiers
as on a par with one another, giving them their own basic rules for
introduction and elimination.

Our second reason relates to the discussion of alternative negation
rules. In the derivations of the rules of 3I and JE that we have offered
in this section, we invoked IP. But, as we mentioned earlier, IP is a
contentious rule. So, if we want to move to a system which abandons
IP, but which still allows us to use existential quantifiers, we will want to
take the introduction and elimination rules for the quantifiers as basic,
and take the CQ rules as derived. (Indeed, in a system without IP,
LEM, and DNE, we will be unable to derive the CQ rule which moves
from =Vad to Jx—9.)



Referéncia
rapida

3.1 Characteristic truth tables

d | -ol A Bl ANB | AVB |d>B | do B

T|F T T[] T T T T

F| T T F F T F F
F T | F T T F
F F F F T T
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3.2 Symbolization

SENTENTIAL CONNECTIVES

It is not the case that P
Either P or Q

Neither P nor Q

Both P and Q

If P then Q

P only if Q

P if and only if Q

P unless Q

All Fs are Gs
Some F's are Gs
Not all F's are Gs

No F's are Gs

Only ¢ is G

Everything besides ¢ is G
The Fis G

It is not the case that

the F is G

The F is non-G

-P

PV Q)

-(P Vv Q) or (=P A —|Q)
(PAQ)

P —0)

P —0)

(P < 0Q)

PvQ)

PREDICATES

Vx(F(x) = G(x))
Ax(F(x) A G(x))
-Vx(F(x) = G(x)) or
Ax(F(x) A =G(x))
Vx(F(x) — =G(x)) or
-3Jx(F(x) A G(x))

IDENTITY

Vx(G(x) & x =¢)

Vx(=x = ¢ > G(x))

3x(F(x) AVY(F(y) = x = y) A G(x))

—3Ax(F(x) AVy(F(y) = x =9) A G(x))
Ax(F(x) AVY(F(y) = x =) A =G(x))
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3.3 Using identity to symbolize quantities

There are at least Fs.

one dx F(x)
two  JxyIxo(F(x1) A F(xg) A —x1 = x9)
three  dx13xo3xs(F(x1) A F(x9) A F(x3) A
—X] = X9 A X1 = X3 A X9 = X3)
four Fx;3xgTxzTxs(F(x1) A F(xg) A F(x3) A F(xy) A
X1 = X9 A X1 = X3 A X1 = x4 A
—X9 = X3 A —X9 = X4 A DX3 = X4)
n Fxy...3x,(F(x) A ... A F(xy) A
X1 =X A A X1 = Xy)

There are at most Fs.

One way to say ‘there are at most n Fs’ is to put
a negation sign in front of the symbolization for ‘there
are at least n + 1 F¥s. Equivalently, we can offer:
one Vix1Vxo [(F(xl) A F(xz)) — X1 = xg]
two  Va1VaxoVaxg [(F(xl) A F(x9) A F(x3)) —
(k1 = x9 V x1 = x3 V X9 =x3)]
three Vx1VaoVasVay [(F(xl) A F(x9) A F(x3) A F(xy)) —
(xlszVx1=x3Vx1=x4V
x2=x3Vx2=x4\/x3=x4)]
no Vx1.. Va[(F(a) Ao A F(xe)) —
(k1 =% V...V, =xn+1)]

There are exactly Fs.

One way to say ‘there are exactly n Fs’ is to conjoin two of the
symbolizations above and say ‘there are at least » Fs and there
are at most n Fs.’ The following equivalent formulas are shorter:
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Vx —F(x)

Ax [F(x) AYY(F(y) — x =y)]

Fxq3xo [F(xl) A F(x9) A

—x1 = X AVY(F() = (9 = 21V y = x9))]
dx13x93x3 [F(xl) A F(x9) A F(x3) A

X1 = X9 A X1 = X3 A X9 = X3 A
Vy(F(y)—>(y:x1Vy:x2Vy:x3))]
3x1...EIx,,[F(x1)/\.../\F(x,,)/\

X1 =X AN 0 AN Xpm1 = X A

Vy(F(p) > (=51 V...Vy=1x,))]
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3.4 Basic deduction rules for TFL

Reiteration Negation
m | o
d Rm P
J €L
-d -1 i—j
Conjunction
m | —~d
m | o
n |4
n | RB
-Em, n

ANB  ANlm,n

m | AANB
d AE m
Indirect proof
m | ANRB
B AE m i -
] 1
.. d IP i—j
Conditional J
i d
J 1]
d—->RB —Slij Explosion
m |dA— 3B
n | d m | L
9] —E m, n d Xm
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Disjunction Biconditional
i A
m | A %
AVB Vim k B
[ Io/]
A
m Ao B oli-j, k-1
RBvdA vl m
m | d e B
m | AV®RB
n | dA
i A
L 933 —E m, n
G
k B m | AR
) G n | B
® VE m, i—j, k-1 A —Em, n
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3.5 Derived rules for TFL

Disjunctive syllogism Excluded middle
m | AVA ‘ i
n | -d J B
RB DS m, n k 4
[ RB
m | AVAR B LEM i—j, k-1
n | %
o DS m, n De Morgan Rules
m | =(A VvV B)
Modus Tollens A A-B DeM m
m | d—RB
m | AR
n | %
~(AVAB) DeMm
- MT m, n
m | =(sd A B)
Df)ul.)le-r.legatlon ~dV B  DeMm
elimination
m | o m | ~dV-RB

o DNE m -(AANB) DeMm
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3.6 Basic deduction rules for FOL

Universal elimination

m | Vad(...x...xc...)

A(...c...c...) VE m

Universal introduction

m |A(L..c...c...)

Ved(...x...xc...) VIm

< must not occur in any
undischarged assumption

2 must not occur in
A(...c...c...)

Identity introduction

Identity elimination

m|a=%8
n |dA(...a...a...)

A(...6...a...) =E m, n

Existential introduction
m | d(...c...c...)
Jed(...x...c...) dm

2 must not occur in
A(...c...c...)

Existential elimination

m | Jed(...xc...xc...)
i |9ﬁ(...c...c...)
e
B 3E m, i—j

< must not occur in any
undischarged assumption, in
FaxA(...x...x...), orin B

=E m, n
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3.7 Derived rules for FOL

m | Yoo
—Jxd

m | -Jdxd
Y-

CQm

CQm

Ja—oA
=V

-Vad
= vate: |

CQOm

CQm
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In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read it
again: if you still don’t understand it, read it again:
if you fail, even after three readings, very likely your
brain is getting a little tired. In that case, put the
book away, and take to other occupations, and next
day, when you come to it fresh, you will very likely
find that it is guite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after fwo readings.
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